1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{witness_mode, Assignment, Inject, LinearCombination, Mode, Variable, R1CS};
use snarkvm_curves::AffineCurve;
use snarkvm_fields::traits::*;

use core::{fmt, hash};

pub trait Environment: 'static + Copy + Clone + fmt::Debug + fmt::Display + Eq + PartialEq + hash::Hash {
    type Network: console::Network<Affine = Self::Affine, Field = Self::BaseField, Scalar = Self::ScalarField>;

    type Affine: AffineCurve<
            BaseField = Self::BaseField,
            ScalarField = Self::ScalarField,
            Coordinates = (Self::BaseField, Self::BaseField),
        >;
    type BaseField: PrimeField + SquareRootField + Copy;
    type ScalarField: PrimeField<BigInteger = <Self::BaseField as PrimeField>::BigInteger> + Copy;

    /// The coefficient `A` of the twisted Edwards curve.
    const EDWARDS_A: Self::BaseField = <Self::Network as console::Environment>::EDWARDS_A;
    /// The coefficient `D` of the twisted Edwards curve.
    const EDWARDS_D: Self::BaseField = <Self::Network as console::Environment>::EDWARDS_D;

    /// The coefficient `A` of the Montgomery curve.
    const MONTGOMERY_A: Self::BaseField = <Self::Network as console::Environment>::MONTGOMERY_A;
    /// The coefficient `B` of the Montgomery curve.
    const MONTGOMERY_B: Self::BaseField = <Self::Network as console::Environment>::MONTGOMERY_B;

    /// The maximum number of bytes allowed in a string.
    const MAX_STRING_BYTES: u32 = <Self::Network as console::Environment>::MAX_STRING_BYTES;

    /// Returns the `zero` constant.
    fn zero() -> LinearCombination<Self::BaseField>;

    /// Returns the `one` constant.
    fn one() -> LinearCombination<Self::BaseField>;

    /// Returns a new variable of the given mode and value.
    fn new_variable(mode: Mode, value: Self::BaseField) -> Variable<Self::BaseField>;

    /// Returns a new witness of the given mode and value.
    fn new_witness<Fn: FnOnce() -> Output::Primitive, Output: Inject>(mode: Mode, value: Fn) -> Output;

    /// Enters a new scope for the environment.
    fn scope<S: Into<String>, Fn, Output>(name: S, logic: Fn) -> Output
    where
        Fn: FnOnce() -> Output;

    /// Adds one constraint enforcing that `(A * B) == C`.
    fn enforce<Fn, A, B, C>(constraint: Fn)
    where
        Fn: FnOnce() -> (A, B, C),
        A: Into<LinearCombination<Self::BaseField>>,
        B: Into<LinearCombination<Self::BaseField>>,
        C: Into<LinearCombination<Self::BaseField>>;

    /// Adds one constraint enforcing that the given boolean is `true`.
    fn assert<Boolean: Into<LinearCombination<Self::BaseField>>>(boolean: Boolean) {
        Self::enforce(|| (boolean, Self::one(), Self::one()))
    }

    /// Adds one constraint enforcing that the `A == B`.
    fn assert_eq<A, B>(a: A, b: B)
    where
        A: Into<LinearCombination<Self::BaseField>>,
        B: Into<LinearCombination<Self::BaseField>>,
    {
        Self::enforce(|| (a, Self::one(), b))
    }

    /// Adds one constraint enforcing that the `A != B`.
    fn assert_neq<A, B>(a: A, b: B)
    where
        A: Into<LinearCombination<Self::BaseField>>,
        B: Into<LinearCombination<Self::BaseField>>,
    {
        let (a, b) = (a.into(), b.into());
        let mode = witness_mode!(a, b);

        // Compute `(a - b)`.
        let a_minus_b = a - b;

        // Compute `multiplier` as `1 / (a - b)`.
        let multiplier = match a_minus_b.value().inverse() {
            Some(inverse) => Self::new_variable(mode, inverse).into(),
            None => Self::zero(),
        };

        // Enforce `(a - b) * multiplier == 1`.
        Self::enforce(|| (a_minus_b, multiplier, Self::one()));
    }

    /// Returns `true` if all constraints in the environment are satisfied.
    fn is_satisfied() -> bool;

    /// Returns `true` if all constraints in the current scope are satisfied.
    fn is_satisfied_in_scope() -> bool;

    /// Returns the number of constants in the entire environment.
    fn num_constants() -> u64;

    /// Returns the number of public variables in the entire environment.
    fn num_public() -> u64;

    /// Returns the number of private variables in the entire environment.
    fn num_private() -> u64;

    /// Returns the number of constraints in the entire environment.
    fn num_constraints() -> u64;

    /// Returns the number of nonzeros in the entire circuit.
    fn num_nonzeros() -> (u64, u64, u64);

    /// Returns a tuple containing the number of constants, public variables, private variables, constraints, and nonzeros in the entire environment.
    fn count() -> (u64, u64, u64, u64, (u64, u64, u64)) {
        (Self::num_constants(), Self::num_public(), Self::num_private(), Self::num_constraints(), Self::num_nonzeros())
    }

    /// Returns the number of constants for the current scope.
    fn num_constants_in_scope() -> u64;

    /// Returns the number of public variables for the current scope.
    fn num_public_in_scope() -> u64;

    /// Returns the number of private variables for the current scope.
    fn num_private_in_scope() -> u64;

    /// Returns the number of constraints for the current scope.
    fn num_constraints_in_scope() -> u64;

    /// Returns the number of nonzeros for the current scope.
    fn num_nonzeros_in_scope() -> (u64, u64, u64);

    /// Returns a tuple containing the number of constants, public variables, private variables, constraints, and nonzeros for the current scope.
    fn count_in_scope() -> (u64, u64, u64, u64, (u64, u64, u64)) {
        (
            Self::num_constants_in_scope(),
            Self::num_public_in_scope(),
            Self::num_private_in_scope(),
            Self::num_constraints_in_scope(),
            Self::num_nonzeros_in_scope(),
        )
    }

    /// Halts the program from further synthesis, evaluation, and execution in the current environment.
    fn halt<S: Into<String>, T>(message: S) -> T {
        <Self::Network as console::Environment>::halt(message)
    }

    /// Returns the R1CS circuit, resetting the circuit.
    fn inject_r1cs(r1cs: R1CS<Self::BaseField>);

    /// Returns the R1CS circuit, resetting the circuit.
    fn eject_r1cs_and_reset() -> R1CS<Self::BaseField>;

    /// Returns the R1CS assignment of the circuit, resetting the circuit.
    fn eject_assignment_and_reset() -> Assignment<<Self::Network as console::Environment>::Field>;

    /// Clears and initializes an empty environment.
    fn reset();
}