1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{helpers::Constraint, Mode, *};

use core::{
    cell::{Cell, RefCell},
    fmt,
};

type Field = <console::Testnet3 as console::Environment>::Field;

thread_local! {
    pub(super) static CIRCUIT: RefCell<R1CS<Field>> = RefCell::new(R1CS::new());
    pub(super) static IN_WITNESS: Cell<bool> = Cell::new(false);
    pub(super) static ZERO: LinearCombination<Field> = LinearCombination::zero();
    pub(super) static ONE: LinearCombination<Field> = LinearCombination::one();
}

#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
pub struct Circuit;

impl Environment for Circuit {
    type Affine = <console::Testnet3 as console::Environment>::Affine;
    type BaseField = Field;
    type Network = console::Testnet3;
    type ScalarField = <console::Testnet3 as console::Environment>::Scalar;

    /// Returns the `zero` constant.
    fn zero() -> LinearCombination<Self::BaseField> {
        ZERO.with(|zero| zero.clone())
    }

    /// Returns the `one` constant.
    fn one() -> LinearCombination<Self::BaseField> {
        ONE.with(|one| one.clone())
    }

    /// Returns a new variable of the given mode and value.
    fn new_variable(mode: Mode, value: Self::BaseField) -> Variable<Self::BaseField> {
        IN_WITNESS.with(|in_witness| {
            // Ensure we are not in witness mode.
            if !in_witness.get() {
                CIRCUIT.with(|circuit| match mode {
                    Mode::Constant => circuit.borrow_mut().new_constant(value),
                    Mode::Public => circuit.borrow_mut().new_public(value),
                    Mode::Private => circuit.borrow_mut().new_private(value),
                })
            } else {
                Self::halt("Tried to initialize a new variable in witness mode")
            }
        })
    }

    /// Returns a new witness of the given mode and value.
    fn new_witness<Fn: FnOnce() -> Output::Primitive, Output: Inject>(mode: Mode, logic: Fn) -> Output {
        IN_WITNESS.with(|in_witness| {
            // Set the entire environment to witness mode.
            in_witness.replace(true);

            // Run the logic.
            let output = logic();

            // Return the entire environment from witness mode.
            in_witness.replace(false);

            Inject::new(mode, output)
        })
    }

    // /// Appends the given scope to the current environment.
    // fn push_scope(name: &str) {
    //     CIRCUIT.with(|circuit| {
    //         // Set the entire environment to the new scope.
    //         match Self::cs().push_scope(name) {
    //             Ok(()) => (),
    //             Err(error) => Self::halt(error),
    //         }
    //     })
    // }
    //
    // /// Removes the given scope from the current environment.
    // fn pop_scope(name: &str) {
    //     CIRCUIT.with(|circuit| {
    //         // Return the entire environment to the previous scope.
    //         match Self::cs().pop_scope(name) {
    //             Ok(scope) => {
    //                 scope
    //             }
    //             Err(error) => Self::halt(error),
    //         }
    //     })
    // }

    /// Enters a new scope for the environment.
    fn scope<S: Into<String>, Fn, Output>(name: S, logic: Fn) -> Output
    where
        Fn: FnOnce() -> Output,
    {
        IN_WITNESS.with(|in_witness| {
            // Ensure we are not in witness mode.
            if !in_witness.get() {
                CIRCUIT.with(|circuit| {
                    // Set the entire environment to the new scope.
                    let name = name.into();
                    if let Err(error) = circuit.borrow_mut().push_scope(&name) {
                        Self::halt(error)
                    }

                    // Run the logic.
                    let output = logic();

                    // Return the entire environment to the previous scope.
                    if let Err(error) = circuit.borrow_mut().pop_scope(name) {
                        Self::halt(error)
                    }

                    output
                })
            } else {
                Self::halt("Tried to initialize a new scope in witness mode")
            }
        })
    }

    /// Adds one constraint enforcing that `(A * B) == C`.
    fn enforce<Fn, A, B, C>(constraint: Fn)
    where
        Fn: FnOnce() -> (A, B, C),
        A: Into<LinearCombination<Self::BaseField>>,
        B: Into<LinearCombination<Self::BaseField>>,
        C: Into<LinearCombination<Self::BaseField>>,
    {
        IN_WITNESS.with(|in_witness| {
            // Ensure we are not in witness mode.
            if !in_witness.get() {
                CIRCUIT.with(|circuit| {
                    let (a, b, c) = constraint();
                    let (a, b, c) = (a.into(), b.into(), c.into());

                    // Ensure the constraint is not comprised of constants.
                    match a.is_constant() && b.is_constant() && c.is_constant() {
                        true => {
                            // Evaluate the constant constraint.
                            assert_eq!(
                                a.value() * b.value(),
                                c.value(),
                                "Constant constraint failed: ({a} * {b}) =?= {c}"
                            );

                            // match self.counter.scope().is_empty() {
                            //     true => println!("Enforced constraint with constant terms: ({} * {}) =?= {}", a, b, c),
                            //     false => println!(
                            //         "Enforced constraint with constant terms ({}): ({} * {}) =?= {}",
                            //         self.counter.scope(), a, b, c
                            //     ),
                            // }
                        }
                        false => {
                            // Construct the constraint object.
                            let constraint = Constraint(circuit.borrow().scope(), a, b, c);
                            // Append the constraint.
                            circuit.borrow_mut().enforce(constraint)
                        }
                    }
                });
            } else {
                Self::halt("Tried to add a new constraint in witness mode")
            }
        })
    }

    /// Returns `true` if all constraints in the environment are satisfied.
    fn is_satisfied() -> bool {
        CIRCUIT.with(|circuit| circuit.borrow().is_satisfied())
    }

    /// Returns `true` if all constraints in the current scope are satisfied.
    fn is_satisfied_in_scope() -> bool {
        CIRCUIT.with(|circuit| circuit.borrow().is_satisfied_in_scope())
    }

    /// Returns the number of constants in the entire circuit.
    fn num_constants() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_constants())
    }

    /// Returns the number of public variables in the entire circuit.
    fn num_public() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_public())
    }

    /// Returns the number of private variables in the entire circuit.
    fn num_private() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_private())
    }

    /// Returns the number of constraints in the entire circuit.
    fn num_constraints() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_constraints())
    }

    /// Returns the number of nonzeros in the entire circuit.
    fn num_nonzeros() -> (u64, u64, u64) {
        CIRCUIT.with(|circuit| circuit.borrow().num_nonzeros())
    }

    /// Returns the number of constants for the current scope.
    fn num_constants_in_scope() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_constants_in_scope())
    }

    /// Returns the number of public variables for the current scope.
    fn num_public_in_scope() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_public_in_scope())
    }

    /// Returns the number of private variables for the current scope.
    fn num_private_in_scope() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_private_in_scope())
    }

    /// Returns the number of constraints for the current scope.
    fn num_constraints_in_scope() -> u64 {
        CIRCUIT.with(|circuit| circuit.borrow().num_constraints_in_scope())
    }

    /// Returns the number of nonzeros for the current scope.
    fn num_nonzeros_in_scope() -> (u64, u64, u64) {
        CIRCUIT.with(|circuit| circuit.borrow().num_nonzeros_in_scope())
    }

    /// Halts the program from further synthesis, evaluation, and execution in the current environment.
    fn halt<S: Into<String>, T>(message: S) -> T {
        let error = message.into();
        // eprintln!("{}", &error);
        panic!("{}", &error)
    }

    /// TODO (howardwu): Abstraction - Refactor this into an appropriate design.
    ///  Circuits should not have easy access to this during synthesis.
    /// Returns the R1CS circuit, resetting the circuit.
    fn inject_r1cs(r1cs: R1CS<Self::BaseField>) {
        CIRCUIT.with(|circuit| {
            // Ensure the circuit is empty before injecting.
            assert_eq!(0, circuit.borrow().num_constants());
            assert_eq!(1, circuit.borrow().num_public());
            assert_eq!(0, circuit.borrow().num_private());
            assert_eq!(0, circuit.borrow().num_constraints());
            // Inject the R1CS instance.
            let r1cs = circuit.replace(r1cs);
            // Ensure the circuit that was replaced is empty.
            assert_eq!(0, r1cs.num_constants());
            assert_eq!(1, r1cs.num_public());
            assert_eq!(0, r1cs.num_private());
            assert_eq!(0, r1cs.num_constraints());
        })
    }

    /// TODO (howardwu): Abstraction - Refactor this into an appropriate design.
    ///  Circuits should not have easy access to this during synthesis.
    /// Returns the R1CS circuit, resetting the circuit.
    fn eject_r1cs_and_reset() -> R1CS<Self::BaseField> {
        CIRCUIT.with(|circuit| {
            // Reset the witness mode.
            IN_WITNESS.with(|in_witness| in_witness.replace(false));
            // Eject the R1CS instance.
            let r1cs = circuit.replace(R1CS::<<Self as Environment>::BaseField>::new());
            // Ensure the circuit is now empty.
            assert_eq!(0, circuit.borrow().num_constants());
            assert_eq!(1, circuit.borrow().num_public());
            assert_eq!(0, circuit.borrow().num_private());
            assert_eq!(0, circuit.borrow().num_constraints());
            // Return the R1CS instance.
            r1cs
        })
    }

    /// TODO (howardwu): Abstraction - Refactor this into an appropriate design.
    ///  Circuits should not have easy access to this during synthesis.
    /// Returns the R1CS assignment of the circuit, resetting the circuit.
    fn eject_assignment_and_reset() -> Assignment<<Self::Network as console::Environment>::Field> {
        CIRCUIT.with(|circuit| {
            // Reset the witness mode.
            IN_WITNESS.with(|in_witness| in_witness.replace(false));
            // Eject the R1CS instance.
            let r1cs = circuit.replace(R1CS::<<Self as Environment>::BaseField>::new());
            assert_eq!(0, circuit.borrow().num_constants());
            assert_eq!(1, circuit.borrow().num_public());
            assert_eq!(0, circuit.borrow().num_private());
            assert_eq!(0, circuit.borrow().num_constraints());
            // Convert the R1CS instance to an assignment.
            Assignment::from(r1cs)
        })
    }

    /// Clears the circuit and initializes an empty environment.
    fn reset() {
        CIRCUIT.with(|circuit| {
            // Reset the witness mode.
            IN_WITNESS.with(|in_witness| in_witness.replace(false));
            *circuit.borrow_mut() = R1CS::<<Self as Environment>::BaseField>::new();
            assert_eq!(0, circuit.borrow().num_constants());
            assert_eq!(1, circuit.borrow().num_public());
            assert_eq!(0, circuit.borrow().num_private());
            assert_eq!(0, circuit.borrow().num_constraints());
        });
    }
}

impl fmt::Display for Circuit {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        CIRCUIT.with(|circuit| write!(f, "{}", circuit.borrow()))
    }
}

#[cfg(test)]
mod tests {
    use snarkvm_circuit::prelude::*;

    /// Compute 2^EXPONENT - 1, in a purposefully constraint-inefficient manner for testing.
    fn create_example_circuit<E: Environment>() -> Field<E> {
        let one = snarkvm_console_types::Field::<E::Network>::one();
        let two = one + one;

        const EXPONENT: u64 = 64;

        // Compute 2^EXPONENT - 1, in a purposefully constraint-inefficient manner for testing.
        let mut candidate = Field::<E>::new(Mode::Public, one);
        let mut accumulator = Field::new(Mode::Private, two);
        for _ in 0..EXPONENT {
            candidate += &accumulator;
            accumulator *= Field::new(Mode::Private, two);
        }

        assert_eq!((accumulator - Field::one()).eject_value(), candidate.eject_value());
        assert_eq!(2, E::num_public());
        assert_eq!(2 * EXPONENT + 1, E::num_private());
        assert_eq!(EXPONENT, E::num_constraints());
        assert!(E::is_satisfied());

        candidate
    }

    #[test]
    fn test_print_circuit() {
        let _candidate = create_example_circuit::<Circuit>();
        let output = format!("{Circuit}");
        println!("{output}");
    }

    #[test]
    fn test_circuit_scope() {
        Circuit::scope("test_circuit_scope", || {
            assert_eq!(0, Circuit::num_constants());
            assert_eq!(1, Circuit::num_public());
            assert_eq!(0, Circuit::num_private());
            assert_eq!(0, Circuit::num_constraints());

            assert_eq!(0, Circuit::num_constants_in_scope());
            assert_eq!(0, Circuit::num_public_in_scope());
            assert_eq!(0, Circuit::num_private_in_scope());
            assert_eq!(0, Circuit::num_constraints_in_scope());
        })
    }
}