1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    helpers::{Constraint, Counter},
    prelude::*,
};
use snarkvm_fields::PrimeField;

use std::rc::Rc;

pub type Scope = String;

#[derive(Debug)]
pub struct R1CS<F: PrimeField> {
    constants: Vec<Variable<F>>,
    public: Vec<Variable<F>>,
    private: Vec<Variable<F>>,
    constraints: Vec<Rc<Constraint<F>>>,
    counter: Counter<F>,
    nonzeros: (u64, u64, u64),
}

impl<F: PrimeField> R1CS<F> {
    /// Returns a new instance of a constraint system.
    pub(crate) fn new() -> Self {
        Self {
            constants: Default::default(),
            public: vec![Variable::Public(Rc::new((0u64, F::one())))],
            private: Default::default(),
            constraints: Default::default(),
            counter: Default::default(),
            nonzeros: (0, 0, 0),
        }
    }

    /// Appends the given scope to the current environment.
    pub(crate) fn push_scope<S: Into<String>>(&mut self, name: S) -> Result<(), String> {
        self.counter.push(name)
    }

    /// Removes the given scope from the current environment.
    pub(crate) fn pop_scope<S: Into<String>>(&mut self, name: S) -> Result<(), String> {
        self.counter.pop(name)
    }

    /// Returns a new constant with the given value and scope.
    pub(crate) fn new_constant(&mut self, value: F) -> Variable<F> {
        let variable = Variable::Constant(Rc::new(value));
        self.constants.push(variable.clone());
        self.counter.increment_constant();
        variable
    }

    /// Returns a new public variable with the given value and scope.
    pub(crate) fn new_public(&mut self, value: F) -> Variable<F> {
        let variable = Variable::Public(Rc::new((self.public.len() as u64, value)));
        self.public.push(variable.clone());
        self.counter.increment_public();
        variable
    }

    /// Returns a new private variable with the given value and scope.
    pub(crate) fn new_private(&mut self, value: F) -> Variable<F> {
        let variable = Variable::Private(Rc::new((self.private.len() as u64, value)));
        self.private.push(variable.clone());
        self.counter.increment_private();
        variable
    }

    /// Adds one constraint enforcing that `(A * B) == C`.
    pub(crate) fn enforce(&mut self, constraint: Constraint<F>) {
        let (a_nonzeros, b_nonzeros, c_nonzeros) = constraint.num_nonzeros();
        self.nonzeros.0 += a_nonzeros;
        self.nonzeros.1 += b_nonzeros;
        self.nonzeros.2 += c_nonzeros;

        let constraint = Rc::new(constraint);
        self.constraints.push(Rc::clone(&constraint));
        self.counter.add_constraint(constraint);
    }

    /// Returns `true` if all of the constraints are satisfied.
    ///
    /// In addition, when in debug mode, this function also checks that
    /// all constraints use variables corresponding to the declared variables.
    pub fn is_satisfied(&self) -> bool {
        // Ensure all constraints are satisfied.
        let constraints_satisfied = self.constraints.iter().all(|constraint| constraint.is_satisfied());
        if !constraints_satisfied {
            return false;
        }

        // In debug mode, ensure all constraints use variables corresponding to the declared variables.
        #[cfg(not(debug_assertions))]
        return true;
        #[cfg(debug_assertions)]
        self.constraints.iter().all(|constraint| {
            let (a, b, c) = constraint.to_terms();
            [a, b, c].into_iter().all(|lc| {
                lc.to_terms().iter().all(|(variable, _)| match variable {
                    Variable::Constant(_value) => false, // terms should not contain Constants
                    Variable::Private(private) => {
                        let (index, value) = private.as_ref();
                        self.private.get(*index as usize).map_or_else(|| false, |v| v.value() == *value)
                    }
                    Variable::Public(public) => {
                        let (index, value) = public.as_ref();
                        self.public.get(*index as usize).map_or_else(|| false, |v| v.value() == *value)
                    }
                })
            })
        })
    }

    /// Returns `true` if all constraints in the current scope are satisfied.
    pub(crate) fn is_satisfied_in_scope(&self) -> bool {
        self.counter.is_satisfied_in_scope()
    }

    /// Returns the current scope.
    pub(crate) fn scope(&self) -> Scope {
        self.counter.scope()
    }

    /// Returns the number of constants in the constraint system.
    pub fn num_constants(&self) -> u64 {
        self.constants.len() as u64
    }

    /// Returns the number of public variables in the constraint system.
    pub fn num_public(&self) -> u64 {
        self.public.len() as u64
    }

    /// Returns the number of private variables in the constraint system.
    pub fn num_private(&self) -> u64 {
        self.private.len() as u64
    }

    /// Returns the number of constraints in the constraint system.
    pub fn num_constraints(&self) -> u64 {
        self.constraints.len() as u64
    }

    /// Returns the number of nonzeros in the constraint system.
    pub fn num_nonzeros(&self) -> (u64, u64, u64) {
        self.nonzeros
    }

    /// Returns the number of constants for the current scope.
    pub(crate) fn num_constants_in_scope(&self) -> u64 {
        self.counter.num_constants_in_scope()
    }

    /// Returns the number of public variables for the current scope.
    pub(crate) fn num_public_in_scope(&self) -> u64 {
        self.counter.num_public_in_scope()
    }

    /// Returns the number of private variables for the current scope.
    pub(crate) fn num_private_in_scope(&self) -> u64 {
        self.counter.num_private_in_scope()
    }

    /// Returns the number of constraints for the current scope.
    pub(crate) fn num_constraints_in_scope(&self) -> u64 {
        self.counter.num_constraints_in_scope()
    }

    /// Returns the number of nonzeros for the current scope.
    pub(crate) fn num_nonzeros_in_scope(&self) -> (u64, u64, u64) {
        self.counter.num_nonzeros_in_scope()
    }

    /// Returns the public variables in the constraint system.
    pub fn to_public_variables(&self) -> &Vec<Variable<F>> {
        &self.public
    }

    /// Returns the private variables in the constraint system.
    pub fn to_private_variables(&self) -> &Vec<Variable<F>> {
        &self.private
    }

    /// Returns the constraints in the constraint system.
    pub fn to_constraints(&self) -> &Vec<Rc<Constraint<F>>> {
        &self.constraints
    }
}

impl<F: PrimeField> Display for R1CS<F> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let mut output = String::default();
        for constraint in self.to_constraints() {
            output += &constraint.to_string();
        }
        output += "\n";

        write!(f, "{output}")
    }
}