snarkvm_circuit_environment/helpers/
assignment.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::Index;
use snarkvm_fields::PrimeField;

use indexmap::IndexMap;
use std::sync::Arc;

#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum AssignmentVariable<F: PrimeField> {
    Constant(F),
    Public(Index),
    Private(Index),
}

impl<F: PrimeField> From<&crate::Variable<F>> for AssignmentVariable<F> {
    /// Converts a variable to an assignment variable.
    fn from(variable: &crate::Variable<F>) -> Self {
        match variable {
            crate::Variable::Constant(value) => Self::Constant(**value),
            crate::Variable::Public(index_value) => {
                let (index, _value) = index_value.as_ref();
                Self::Public(*index)
            }
            crate::Variable::Private(index_value) => {
                let (index, _value) = index_value.as_ref();
                Self::Private(*index)
            }
        }
    }
}

#[derive(Clone, Debug)]
pub struct AssignmentLC<F: PrimeField> {
    constant: F,
    terms: Vec<(AssignmentVariable<F>, F)>,
}

impl<F: PrimeField> From<&crate::LinearCombination<F>> for AssignmentLC<F> {
    /// Converts a linear combination to an assignment linear combination.
    fn from(lc: &crate::LinearCombination<F>) -> Self {
        Self {
            constant: lc.to_constant(),
            terms: FromIterator::from_iter(
                lc.to_terms().iter().map(|(variable, coefficient)| (variable.into(), *coefficient)),
            ),
        }
    }
}

impl<F: PrimeField> AssignmentLC<F> {
    /// Returns the constant term of the linear combination.
    pub const fn constant(&self) -> F {
        self.constant
    }

    /// Returns the terms of the linear combination.
    pub const fn terms(&self) -> &Vec<(AssignmentVariable<F>, F)> {
        &self.terms
    }

    /// Returns the number of nonzeros in the linear combination.
    pub(super) fn num_nonzeros(&self) -> u64 {
        // Increment by one if the constant is nonzero.
        match self.constant.is_zero() {
            true => self.terms.len() as u64,
            false => (self.terms.len() as u64).saturating_add(1),
        }
    }
}

/// A struct that contains public variable assignments, private variable assignments,
/// and constraint assignments.
#[derive(Clone, Debug)]
pub struct Assignment<F: PrimeField> {
    /// The public variables.
    public: Arc<[(Index, F)]>,
    /// The private variables.
    private: Arc<[(Index, F)]>,
    /// The constraints.
    constraints: Arc<[(AssignmentLC<F>, AssignmentLC<F>, AssignmentLC<F>)]>,
    /// The number of constants, public, and private variables in the assignment.
    num_variables: u64,
}

impl<F: PrimeField> From<crate::R1CS<F>> for Assignment<F> {
    /// Converts an R1CS to an assignment.
    fn from(r1cs: crate::R1CS<F>) -> Self {
        Self {
            public: FromIterator::from_iter(
                r1cs.to_public_variables().iter().map(|variable| (variable.index(), variable.value())),
            ),
            private: FromIterator::from_iter(
                r1cs.to_private_variables().iter().map(|variable| (variable.index(), variable.value())),
            ),
            constraints: FromIterator::from_iter(r1cs.to_constraints().iter().map(|constraint| {
                let (a, b, c) = constraint.to_terms();
                (a.into(), b.into(), c.into())
            })),
            num_variables: r1cs.num_variables(),
        }
    }
}

impl<F: PrimeField> Assignment<F> {
    /// Returns the public inputs of the assignment.
    pub const fn public_inputs(&self) -> &Arc<[(Index, F)]> {
        &self.public
    }

    /// Returns the private inputs of the assignment.
    pub const fn private_inputs(&self) -> &Arc<[(Index, F)]> {
        &self.private
    }

    /// Returns the constraints of the assignment.
    pub const fn constraints(&self) -> &Arc<[(AssignmentLC<F>, AssignmentLC<F>, AssignmentLC<F>)]> {
        &self.constraints
    }

    /// Returns the number of public variables in the assignment.
    pub fn num_public(&self) -> u64 {
        self.public.len() as u64
    }

    /// Returns the number of private variables in the assignment.
    pub fn num_private(&self) -> u64 {
        self.private.len() as u64
    }

    /// Returns the number of constants, public, and private variables in the assignment.
    pub fn num_variables(&self) -> u64 {
        self.num_variables
    }

    /// Returns the number of constraints in the assignment.
    pub fn num_constraints(&self) -> u64 {
        self.constraints.len() as u64
    }

    /// Returns the number of nonzeros in the assignment.
    pub fn num_nonzeros(&self) -> (u64, u64, u64) {
        self.constraints
            .iter()
            .map(|(a, b, c)| (a.num_nonzeros(), b.num_nonzeros(), c.num_nonzeros()))
            .fold((0, 0, 0), |(a, b, c), (x, y, z)| (a.saturating_add(x), b.saturating_add(y), c.saturating_add(z)))
    }
}

impl<F: PrimeField> snarkvm_algorithms::r1cs::ConstraintSynthesizer<F> for Assignment<F> {
    /// Synthesizes the constraints from the environment into a `snarkvm_algorithms::r1cs`-compliant constraint system.
    fn generate_constraints<CS: snarkvm_algorithms::r1cs::ConstraintSystem<F>>(
        &self,
        cs: &mut CS,
    ) -> Result<(), snarkvm_algorithms::r1cs::SynthesisError> {
        /// A struct for tracking the mapping of variables from the virtual machine (first) to the gadget constraint system (second).
        struct Converter {
            public: IndexMap<u64, snarkvm_algorithms::r1cs::Variable>,
            private: IndexMap<u64, snarkvm_algorithms::r1cs::Variable>,
        }

        let mut converter = Converter { public: Default::default(), private: Default::default() };

        // Ensure the given `cs` is starting off clean.
        assert_eq!(1, cs.num_public_variables());
        assert_eq!(0, cs.num_private_variables());
        assert_eq!(0, cs.num_constraints());

        let result = converter.public.insert(0, CS::one());
        assert!(result.is_none(), "Overwrote an existing public variable in the converter");

        // Allocate the public variables.
        // NOTE: we skip the first public `One` variable because we already allocated it in the `ConstraintSystem` constructor.
        for (i, (index, value)) in self.public.iter().skip(1).enumerate() {
            assert_eq!((i + 1) as u64, *index, "Public vars in first system must be processed in lexicographic order");

            let gadget = cs.alloc_input(|| format!("Public {i}"), || Ok(*value))?;

            assert_eq!(
                snarkvm_algorithms::r1cs::Index::Public(*index as usize),
                gadget.get_unchecked(),
                "Public variables in the second system must match the first system (with an off-by-1 for the public case)"
            );

            let result = converter.public.insert(*index, gadget);

            assert!(result.is_none(), "Overwrote an existing public variable in the converter");
        }

        // Allocate the private variables.
        for (i, (index, value)) in self.private.iter().enumerate() {
            assert_eq!(i as u64, *index, "Private variables in first system must be processed in lexicographic order");

            let gadget = cs.alloc(|| format!("Private {i}"), || Ok(*value))?;

            assert_eq!(
                snarkvm_algorithms::r1cs::Index::Private(i),
                gadget.get_unchecked(),
                "Private variables in the second system must match the first system"
            );

            let result = converter.private.insert(*index, gadget);

            assert!(result.is_none(), "Overwrote an existing private variable in the converter");
        }

        // Enforce all of the constraints.
        for (i, (a, b, c)) in self.constraints.iter().enumerate() {
            // Converts terms from one linear combination in the first system to the second system.
            let convert_linear_combination = |lc: &AssignmentLC<F>| -> snarkvm_algorithms::r1cs::LinearCombination<F> {
                // Initialize a linear combination for the second system.
                let mut linear_combination = snarkvm_algorithms::r1cs::LinearCombination::<F>::zero();

                // Process every term in the linear combination.
                for (variable, coefficient) in lc.terms.iter() {
                    match variable {
                        AssignmentVariable::Constant(_) => {
                            unreachable!(
                                "Failed during constraint translation. The first system by definition cannot have constant variables in the terms"
                            )
                        }
                        AssignmentVariable::Public(index) => {
                            let gadget = converter.public.get(index).unwrap();
                            assert_eq!(
                                snarkvm_algorithms::r1cs::Index::Public(*index as usize),
                                gadget.get_unchecked(),
                                "Failed during constraint translation. The public variable in the second system must match the first system (with an off-by-1 for the public case)"
                            );
                            linear_combination += (*coefficient, *gadget);
                        }
                        AssignmentVariable::Private(index) => {
                            let gadget = converter.private.get(index).unwrap();
                            assert_eq!(
                                snarkvm_algorithms::r1cs::Index::Private(*index as usize),
                                gadget.get_unchecked(),
                                "Failed during constraint translation. The private variable in the second system must match the first system"
                            );
                            linear_combination += (*coefficient, *gadget);
                        }
                    }
                }

                // Finally, add the accumulated constant value to the linear combination.
                if !lc.constant.is_zero() {
                    linear_combination += (
                        lc.constant,
                        snarkvm_algorithms::r1cs::Variable::new_unchecked(snarkvm_algorithms::r1cs::Index::Public(0)),
                    );
                }

                // Return the linear combination of the second system.
                linear_combination
            };

            cs.enforce(
                || format!("Constraint {i}"),
                |lc| lc + convert_linear_combination(a),
                |lc| lc + convert_linear_combination(b),
                |lc| lc + convert_linear_combination(c),
            );
        }

        // Ensure the given `cs` matches in size with the first system.
        assert_eq!(self.num_public(), cs.num_public_variables() as u64);
        assert_eq!(self.num_private(), cs.num_private_variables() as u64);
        assert_eq!(self.num_constraints(), cs.num_constraints() as u64);

        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use snarkvm_algorithms::{AlgebraicSponge, SNARK, r1cs::ConstraintSynthesizer};
    use snarkvm_circuit::prelude::*;
    use snarkvm_curves::bls12_377::Fr;

    /// Compute 2^EXPONENT - 1, in a purposefully constraint-inefficient manner for testing.
    fn create_example_circuit<E: Environment>() -> Field<E> {
        let one = snarkvm_console_types::Field::<E::Network>::one();
        let two = one + one;

        const EXPONENT: u64 = 64;

        // Compute 2^EXPONENT - 1, in a purposefully constraint-inefficient manner for testing.
        let mut candidate = Field::<E>::new(Mode::Public, one);
        let mut accumulator = Field::new(Mode::Private, two);
        for _ in 0..EXPONENT {
            candidate += &accumulator;
            accumulator *= Field::new(Mode::Private, two);
        }

        assert_eq!((accumulator - Field::one()).eject_value(), candidate.eject_value());
        assert_eq!(2, E::num_public());
        assert_eq!(2 * EXPONENT + 1, E::num_private());
        assert_eq!(EXPONENT, E::num_constraints());
        assert!(E::is_satisfied());

        candidate
    }

    #[test]
    fn test_constraint_converter() {
        let _candidate_output = create_example_circuit::<Circuit>();
        let assignment = Circuit::eject_assignment_and_reset();
        assert_eq!(0, Circuit::num_constants());
        assert_eq!(1, Circuit::num_public());
        assert_eq!(0, Circuit::num_private());
        assert_eq!(0, Circuit::num_constraints());

        let mut cs = snarkvm_algorithms::r1cs::TestConstraintSystem::new();
        assignment.generate_constraints(&mut cs).unwrap();
        {
            use snarkvm_algorithms::r1cs::ConstraintSystem;
            assert_eq!(assignment.num_public(), cs.num_public_variables() as u64);
            assert_eq!(assignment.num_private(), cs.num_private_variables() as u64);
            assert_eq!(assignment.num_constraints(), cs.num_constraints() as u64);
            assert!(cs.is_satisfied());
        }
    }

    #[test]
    fn test_varuna() {
        let _candidate_output = create_example_circuit::<Circuit>();
        let assignment = Circuit::eject_assignment_and_reset();
        assert_eq!(0, Circuit::num_constants());
        assert_eq!(1, Circuit::num_public());
        assert_eq!(0, Circuit::num_private());
        assert_eq!(0, Circuit::num_constraints());

        // Varuna setup, prove, and verify.

        use snarkvm_algorithms::{
            crypto_hash::PoseidonSponge,
            snark::varuna::{VarunaHidingMode, VarunaSNARK, ahp::AHPForR1CS},
        };
        use snarkvm_curves::bls12_377::{Bls12_377, Fq};
        use snarkvm_utilities::rand::TestRng;

        type FS = PoseidonSponge<Fq, 2, 1>;
        type VarunaInst = VarunaSNARK<Bls12_377, FS, VarunaHidingMode>;

        let rng = &mut TestRng::default();

        let max_degree = AHPForR1CS::<Fr, VarunaHidingMode>::max_degree(200, 200, 300).unwrap();
        let universal_srs = VarunaInst::universal_setup(max_degree).unwrap();
        let universal_prover = &universal_srs.to_universal_prover().unwrap();
        let universal_verifier = &universal_srs.to_universal_verifier().unwrap();
        let fs_pp = FS::sample_parameters();

        let (index_pk, index_vk) = VarunaInst::circuit_setup(&universal_srs, &assignment).unwrap();
        println!("Called circuit setup");

        let proof = VarunaInst::prove(universal_prover, &fs_pp, &index_pk, &assignment, rng).unwrap();
        println!("Called prover");

        let one = <Circuit as Environment>::BaseField::one();
        assert!(VarunaInst::verify(universal_verifier, &fs_pp, &index_vk, [one, one], &proof).unwrap());
        println!("Called verifier");
        println!("\nShould not verify (i.e. verifier messages should print below):");
        assert!(!VarunaInst::verify(universal_verifier, &fs_pp, &index_vk, [one, one + one], &proof).unwrap());
    }
}