snarkvm_circuit_environment/traits/
eject.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::Mode;

/// Operations to eject from a circuit environment into primitive form.
pub trait Eject {
    type Primitive;

    ///
    /// Ejects the mode and primitive value of the circuit type.
    ///
    fn eject(&self) -> (Mode, Self::Primitive) {
        (self.eject_mode(), self.eject_value())
    }

    ///
    /// Ejects the mode of the circuit type.
    ///
    fn eject_mode(&self) -> Mode;

    ///
    /// Ejects the circuit type as a primitive value.
    ///
    fn eject_value(&self) -> Self::Primitive;

    ///
    /// Returns `true` if the circuit is a constant.
    ///
    fn is_constant(&self) -> bool {
        self.eject_mode().is_constant()
    }

    ///
    /// Returns `true` if the circuit is a public.
    ///
    fn is_public(&self) -> bool {
        self.eject_mode().is_public()
    }

    ///
    /// Returns `true` if the circuit is a private.
    ///
    fn is_private(&self) -> bool {
        self.eject_mode().is_private()
    }
}

/********************/
/****** Arrays ******/
/********************/

impl Eject for Vec<Mode> {
    type Primitive = Vec<Mode>;

    /// A helper method to deduce the mode from a list of `Eject` circuits.
    #[inline]
    fn eject_mode(&self) -> Mode {
        // TODO (howardwu): Determine if a default mode of `constant` is appropriate.
        // Retrieve the mode of the first circuit.
        match self.first() {
            Some(first) => Mode::combine(*first, self.iter().copied().skip(1)),
            // None => Mode::Constant,
            None => panic!("Attempted to eject the mode on an empty circuit"),
        }
    }

    /// Ejects the value from each circuit.
    #[inline]
    fn eject_value(&self) -> Self::Primitive {
        self.clone()
    }
}

impl<C: Eject<Primitive = P>, P> Eject for Vec<C> {
    type Primitive = Vec<P>;

    /// A helper method to deduce the mode from a list of `Eject` circuits.
    #[inline]
    fn eject_mode(&self) -> Mode {
        self.as_slice().eject_mode()
    }

    /// Ejects the value from each circuit.
    #[inline]
    fn eject_value(&self) -> Self::Primitive {
        self.as_slice().eject_value()
    }
}

impl<C: Eject<Primitive = P>, P, const N: usize> Eject for [C; N] {
    type Primitive = Vec<P>;

    /// A helper method to deduce the mode from a list of `Eject` circuits.
    #[inline]
    fn eject_mode(&self) -> Mode {
        self.as_slice().eject_mode()
    }

    /// Ejects the value from each circuit.
    #[inline]
    fn eject_value(&self) -> Self::Primitive {
        self.as_slice().eject_value()
    }
}

impl<C: Eject<Primitive = P>, P> Eject for &[C] {
    type Primitive = Vec<P>;

    /// A helper method to deduce the mode from a list of `Eject` circuits.
    #[inline]
    fn eject_mode(&self) -> Mode {
        // TODO (howardwu): Determine if a default mode of `constant` is appropriate.
        // Retrieve the mode of the first circuit.
        match self.first() {
            Some(first) => Mode::combine(first.eject_mode(), self.iter().skip(1).map(Eject::eject_mode)),
            None => Mode::Constant,
            // None => panic!("Attempted to eject the mode on an empty circuit"),
        }
    }

    /// Ejects the value from each circuit.
    #[inline]
    fn eject_value(&self) -> Self::Primitive {
        self.iter().map(Eject::eject_value).collect()
    }
}

/********************/
/****** Tuples ******/
/********************/

/// A helper macro to implement `Eject` for a tuple of `Eject` circuits.
macro_rules! eject_tuple {
    (($t0:ident, 0), $(($ty:ident, $idx:tt)),*) => {
        impl<'a, $t0: Eject, $($ty: Eject),*> Eject for (&'a $t0, $(&'a $ty),*) {
            type Primitive = ($t0::Primitive, $( $ty::Primitive ),*);

            /// A helper method to deduce the mode from a tuple of `Eject` circuits.
            #[inline]
            fn eject_mode(&self) -> Mode {
                Mode::combine(self.0.eject_mode(), [ $(self.$idx.eject_mode()),* ])
            }

            /// Ejects the value from each circuit.
            #[inline]
            fn eject_value(&self) -> Self::Primitive {
                (self.0.eject_value(), $(self.$idx.eject_value()),*)
            }
        }

        impl<'a, $t0: Eject, $($ty: Eject),*> Eject for &'a ($t0, $($ty),*) {
            type Primitive = ($t0::Primitive, $( $ty::Primitive ),*);

            /// A helper method to deduce the mode from a tuple of `Eject` circuits.
            #[inline]
            fn eject_mode(&self) -> Mode {
                Mode::combine(self.0.eject_mode(), [ $(self.$idx.eject_mode()),* ])
            }

            /// Ejects the value from each circuit.
            #[inline]
            fn eject_value(&self) -> Self::Primitive {
                (self.0.eject_value(), $(self.$idx.eject_value()),*)
            }
        }
    }
}

eject_tuple!((C0, 0),);
eject_tuple!((C0, 0), (C1, 1));
eject_tuple!((C0, 0), (C1, 1), (C2, 2));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10));
#[rustfmt::skip] eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10), (C11, 11));
#[rustfmt::skip] eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10), (C11, 11), (C12, 12));