1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<A: Aleo> FromBits for Plaintext<A> {
type Boolean = Boolean<A>;
/// Initializes a new plaintext from a list of little-endian bits *without* trailing zeros.
fn from_bits_le(bits_le: &[Boolean<A>]) -> Self {
let bits = bits_le;
// The starting index used to create subsequent subslices of the `bits` slice.
let mut index = 0;
// Helper function to get the next n bits as a slice.
let mut next_bits = |n: usize| -> &[Boolean<A>] {
// Safely procure a subslice with the length `n` starting at `index`.
let subslice = bits.get(index..index + n);
// Check if the range is within bounds.
if let Some(next_bits) = subslice {
// Move the starting index.
index += n;
// Return the subslice.
next_bits
} else {
A::halt("Insufficient bits.")
}
};
let mut variant = next_bits(2).iter().map(|b| b.eject_value());
let variant1 = variant.next().unwrap();
let variant2 = variant.next().unwrap();
let variant = [variant1, variant2];
// Literal
if variant == [false, false] {
let literal_variant = U8::from_bits_le(next_bits(8));
let literal_size = U16::from_bits_le(next_bits(16)).eject_value();
let literal = Literal::from_bits_le(&literal_variant, next_bits(*literal_size as usize));
// Cache the plaintext bits, and return the literal.
Self::Literal(literal, OnceCell::with_value(bits_le.to_vec()))
}
// Struct
else if variant == [false, true] {
let num_members = U8::from_bits_le(next_bits(8)).eject_value();
let mut members = IndexMap::with_capacity(*num_members as usize);
for _ in 0..*num_members {
let identifier_size = U8::from_bits_le(next_bits(8)).eject_value();
let identifier = Identifier::from_bits_le(next_bits(*identifier_size as usize));
let member_size = U16::from_bits_le(next_bits(16)).eject_value();
let value = Plaintext::from_bits_le(next_bits(*member_size as usize));
members.insert(identifier, value);
}
// Cache the plaintext bits, and return the struct.
Self::Struct(members, OnceCell::with_value(bits_le.to_vec()))
}
// Array
else if variant == [true, false] {
let num_elements = U32::from_bits_le(next_bits(32)).eject_value();
let mut elements = Vec::with_capacity(*num_elements as usize);
for _ in 0..*num_elements {
let element_size = U16::from_bits_le(next_bits(16)).eject_value();
let value = Plaintext::from_bits_le(next_bits(*element_size as usize));
elements.push(value);
}
// Cache the plaintext bits, and return the array.
Self::Array(elements, OnceCell::with_value(bits_le.to_vec()))
}
// Unknown variant.
else {
A::halt("Unknown plaintext variant.")
}
}
/// Initializes a new plaintext from a list of big-endian bits *without* trailing zeros.
fn from_bits_be(bits_be: &[Boolean<A>]) -> Self {
let bits = bits_be;
// The starting index used to create subsequent subslices of the `bits` slice.
let mut index = 0;
// Helper function to get the next n bits as a slice.
let mut next_bits = |n: usize| -> &[Boolean<A>] {
// Safely procure a subslice with the length `n` starting at `index`.
let subslice = bits.get(index..index + n);
// Check if the range is within bounds.
if let Some(next_bits) = subslice {
// Move the starting index.
index += n;
// Return the subslice.
next_bits
} else {
A::halt("Insufficient bits.")
}
};
let mut variant = next_bits(2).iter().map(|b| b.eject_value());
let variant1 = variant.next().unwrap();
let variant2 = variant.next().unwrap();
let variant = [variant1, variant2];
// Literal
if variant == [false, false] {
let literal_variant = U8::from_bits_be(next_bits(8));
let literal_size = U16::from_bits_be(next_bits(16)).eject_value();
let literal = Literal::from_bits_be(&literal_variant, next_bits(*literal_size as usize));
// Cache the plaintext bits, and return the literal.
Self::Literal(literal, OnceCell::with_value(bits_be.to_vec()))
}
// Struct
else if variant == [false, true] {
let num_members = U8::from_bits_be(next_bits(8)).eject_value();
let mut members = IndexMap::with_capacity(*num_members as usize);
for _ in 0..*num_members {
let identifier_size = U8::from_bits_be(next_bits(8)).eject_value();
let identifier = Identifier::from_bits_be(next_bits(*identifier_size as usize));
let member_size = U16::from_bits_be(next_bits(16)).eject_value();
let value = Plaintext::from_bits_be(next_bits(*member_size as usize));
members.insert(identifier, value);
}
// Cache the plaintext bits, and return the struct.
Self::Struct(members, OnceCell::with_value(bits_be.to_vec()))
}
// Array
else if variant == [true, false] {
let num_elements = U32::from_bits_be(next_bits(32)).eject_value();
let mut elements = Vec::with_capacity(*num_elements as usize);
for _ in 0..*num_elements {
let element_size = U16::from_bits_be(next_bits(16)).eject_value();
let value = Plaintext::from_bits_be(next_bits(*element_size as usize));
elements.push(value);
}
// Cache the plaintext bits, and return the array.
Self::Array(elements, OnceCell::with_value(bits_be.to_vec()))
}
// Unknown variant.
else {
A::halt("Unknown plaintext variant.")
}
}
}