snarkvm_circuit_types_field/equal.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<E: Environment> Equal<Self> for Field<E> {
type Output = Boolean<E>;
///
/// Returns `true` if `self` and `other` are equal.
///
/// This method costs 2 constraints.
///
fn is_equal(&self, other: &Self) -> Self::Output {
!self.is_not_equal(other)
}
///
/// Returns `true` if `self` and `other` are *not* equal.
///
/// This method constructs a boolean that indicates if
/// `self` and `other ` are *not* equal to each other.
///
/// This method costs 2 constraints.
///
fn is_not_equal(&self, other: &Self) -> Self::Output {
// Initialize a (console) boolean that is `true` if `this` and `that` are not equivalent.
let is_neq_ejected = self.eject_value() != other.eject_value();
match (self.is_constant(), other.is_constant()) {
// If both operands are 'Constant', the result is also 'Constant'.
(true, true) => Boolean::new(Mode::Constant, is_neq_ejected),
_ => {
// Inequality Enforcement
// ----------------------------------------------------------------
// Check 1: (a - b) * multiplier = is_neq
// Check 2: (a - b) * (1 - is_neq) = 0
//
//
// Case 1: a == b AND is_neq == 0 (honest)
// ----------------------------------------------------------------
// Check 1: (a - b) * multiplier = 0
// 0 * multiplier = 0
// 0 = 0
// => The constraint is satisfied.
//
// Check 2: (a - b) * (1 - 0) = 0
// 0 * 1 = 0
// 0 = 0
// => The constraint is satisfied.
//
//
// Case 2: a == b AND is_neq != 0 (dishonest)
// ----------------------------------------------------------------
// Check 1: (a - b) * multiplier = is_neq
// 0 * multiplier = is_neq
// 0 = is_neq
// => As is_neq != 0, the constraint is not satisfied.
//
//
// Case 3: a != b AND is_neq != 1 (dishonest).
// ----------------------------------------------------------------
// Check 2: (a - b) * (1 - is_neq) = 0
// (1 - is_neq) = 0
// => As is_neq != 1, the constraint is not satisfied.
//
//
// Case 4a: a != b AND is_neq == 1 AND multiplier = n [!= (a - b)^(-1)] (dishonest)
// ---------------------------------------------------------------------------------
// Check 1: (a - b) * n = 1
// => As n != (a - b)^(-1), the constraint is not satisfied.
//
//
// Case 4b: a != b AND is_neq == 1 AND multiplier = (a - b)^(-1) (honest)
// ---------------------------------------------------------------------------------
// Check 1: (a - b) * (a - b)^(-1) = 1
// 1 = 1
// => The constraint is satisfied.
//
// Check 2: (a - b) * (1 - 1) = 0
// (a - b) * 0 = 0
// 0 = 0
// => The constraint is satisfied.
//
//
// Observe that in both of the honest cases, `is_neq` is always 0 or 1.
// Witness a boolean that is `true` if `this` and `that` are not equivalent.
let is_neq = Boolean::from_variable(E::new_variable(Mode::Private, match is_neq_ejected {
true => E::BaseField::one(),
false => E::BaseField::zero(),
}));
// Compute `self` - `other`.
let delta = self - other;
// Assign the expected multiplier as a witness.
//
// Note: the inverse of `delta` is not guaranteed to exist, and if it does not,
// we pick 1 as the multiplier, as its value is irrelevant to satisfy the constraints.
let multiplier: Field<E> = witness!(|delta| {
match delta.inverse() {
Ok(inverse) => inverse,
_ => console::Field::one(),
}
});
// Negate `is_neq`.
let is_eq = !is_neq.clone();
// Check 1: (a - b) * multiplier = is_neq
E::enforce(|| (&delta, &multiplier, &is_neq));
// Check 2: (a - b) * not(is_neq) = 0
E::enforce(|| (delta, is_eq, E::zero()));
// Return `is_neq`.
is_neq
}
}
}
}
impl<E: Environment> Metrics<dyn Equal<Field<E>, Output = Boolean<E>>> for Field<E> {
type Case = (Mode, Mode);
// TODO: How to deal where both operands are the same field element, since it changes the number of gates produced? We could use upper bounds.
fn count(case: &Self::Case) -> Count {
match case {
(Mode::Constant, Mode::Constant) => Count::is(1, 0, 0, 0),
_ => Count::is(0, 0, 2, 2),
}
}
}
impl<E: Environment> OutputMode<dyn Equal<Field<E>, Output = Boolean<E>>> for Field<E> {
type Case = (Mode, Mode);
fn output_mode(case: &Self::Case) -> Mode {
match case {
(Mode::Constant, Mode::Constant) => Mode::Constant,
_ => Mode::Private,
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use snarkvm_circuit_environment::Circuit;
const ITERATIONS: u64 = 200;
fn check_is_equal(name: &str, expected: bool, a: &Field<Circuit>, b: &Field<Circuit>) {
Circuit::scope(name, || {
let candidate = a.is_equal(b);
assert_eq!(expected, candidate.eject_value(), "({} == {})", a.eject_value(), b.eject_value());
assert_count!(Equal(Field, Field) => Boolean, &(a.eject_mode(), b.eject_mode()));
assert_output_mode!(Equal(Field, Field) => Boolean, &(a.eject_mode(), b.eject_mode()), candidate);
});
}
fn check_is_not_equal(name: &str, expected: bool, a: &Field<Circuit>, b: &Field<Circuit>) {
Circuit::scope(name, || {
let candidate = a.is_not_equal(b);
assert_eq!(expected, candidate.eject_value(), "({} != {})", a.eject_value(), b.eject_value());
assert_count!(Equal(Field, Field) => Boolean, &(a.eject_mode(), b.eject_mode()));
assert_output_mode!(Equal(Field, Field) => Boolean, &(a.eject_mode(), b.eject_mode()), candidate);
});
}
fn run_test(mode_a: Mode, mode_b: Mode) {
let mut rng = TestRng::default();
for i in 0..ITERATIONS {
let first = Uniform::rand(&mut rng);
let second = Uniform::rand(&mut rng);
let a = Field::<Circuit>::new(mode_a, first);
let b = Field::<Circuit>::new(mode_b, second);
let name = format!("Equal: a == b {i}");
check_is_equal(&name, first == second, &a, &b);
let name = format!("Not Equal: a != b {i}");
check_is_not_equal(&name, first != second, &a, &b);
// Check first is equal to first.
let a = Field::<Circuit>::new(mode_a, first);
let b = Field::<Circuit>::new(mode_b, first);
let name = format!("{first} == {first}");
check_is_equal(&name, true, &a, &b);
// Check second is equal to second.
let a = Field::<Circuit>::new(mode_a, second);
let b = Field::<Circuit>::new(mode_b, second);
let name = format!("{second} == {second}");
check_is_equal(&name, true, &a, &b);
}
}
#[test]
fn test_constant_is_equal_to_constant() {
run_test(Mode::Constant, Mode::Constant);
}
#[test]
fn test_constant_is_not_equal_to_public() {
run_test(Mode::Constant, Mode::Public);
}
#[test]
fn test_constant_is_not_equal_to_private() {
run_test(Mode::Constant, Mode::Private);
}
#[test]
fn test_public_is_equal_to_constant() {
run_test(Mode::Public, Mode::Constant);
}
#[test]
fn test_private_is_equal_to_constant() {
run_test(Mode::Private, Mode::Constant);
}
#[test]
fn test_public_is_equal_to_public() {
run_test(Mode::Public, Mode::Public);
}
#[test]
fn test_public_is_not_equal_to_private() {
run_test(Mode::Public, Mode::Private);
}
#[test]
fn test_private_is_equal_to_public() {
run_test(Mode::Private, Mode::Public);
}
#[test]
fn test_private_is_equal_to_private() {
run_test(Mode::Private, Mode::Private);
}
#[test]
fn test_is_eq_cases() {
let one = console::Field::<<Circuit as Environment>::Network>::one();
// Basic `true` and `false` cases
{
let mut accumulator = one + one;
for _ in 0..ITERATIONS {
let a = Field::<Circuit>::new(Mode::Private, accumulator);
let b = Field::<Circuit>::new(Mode::Private, accumulator);
let is_eq = a.is_equal(&b);
assert!(is_eq.eject_value()); // true
let a = Field::<Circuit>::new(Mode::Private, one);
let b = Field::<Circuit>::new(Mode::Private, accumulator);
let is_eq = a.is_equal(&b);
assert!(!is_eq.eject_value()); // false
let a = Field::<Circuit>::new(Mode::Private, accumulator);
let b = Field::<Circuit>::new(Mode::Private, accumulator - one);
let is_eq = a.is_equal(&b);
assert!(!is_eq.eject_value()); // false
accumulator += one;
}
}
}
#[test]
fn test_is_neq_cases() {
let zero = console::Field::<<Circuit as Environment>::Network>::zero();
let one = console::Field::<<Circuit as Environment>::Network>::one();
let two = one + one;
let five = two + two + one;
// Inequality Enforcement
// ----------------------------------------------------------------
// Check 1: (a - b) * multiplier = is_neq
// Check 2: (a - b) * not(is_neq) = 0
let enforce = |a: Field<Circuit>, b: Field<Circuit>, multiplier: Field<Circuit>, is_neq: Boolean<Circuit>| {
// Compute `self` - `other`.
let delta = &a - &b;
// Negate `is_neq`.
let is_eq = !is_neq.clone();
// Check 1: (a - b) * multiplier = is_neq
Circuit::enforce(|| (delta.clone(), multiplier, is_neq.clone()));
// Check 2: (a - b) * not(is_neq) = 0
Circuit::enforce(|| (delta, is_eq, Circuit::zero()));
};
//
// Case 1: a == b AND is_neq == 0 (honest)
// ----------------------------------------------------------------
let a = Field::<Circuit>::new(Mode::Private, five);
let b = Field::<Circuit>::new(Mode::Private, five);
let multiplier = Field::<Circuit>::new(Mode::Private, one);
let is_neq = Boolean::new(Mode::Private, false);
assert!(Circuit::is_satisfied());
enforce(a, b, multiplier, is_neq);
assert!(Circuit::is_satisfied());
Circuit::reset();
//
// Case 2: a == b AND is_neq == 1 (dishonest)
// ----------------------------------------------------------------
let a = Field::<Circuit>::new(Mode::Private, five);
let b = Field::<Circuit>::new(Mode::Private, five);
let multiplier = Field::<Circuit>::new(Mode::Private, one);
let is_neq = Boolean::new(Mode::Private, true);
assert!(Circuit::is_satisfied());
enforce(a, b, multiplier, is_neq);
assert!(!Circuit::is_satisfied());
Circuit::reset();
// Case 3a: a != b AND is_neq == 0 AND multiplier = 0 (dishonest)
// ----------------------------------------------------------------
let a = Field::<Circuit>::new(Mode::Private, five);
let b = Field::<Circuit>::new(Mode::Private, two);
let multiplier = Field::<Circuit>::new(Mode::Private, zero);
let is_neq = Boolean::new(Mode::Private, false);
assert!(Circuit::is_satisfied());
enforce(a, b, multiplier, is_neq);
assert!(!Circuit::is_satisfied());
Circuit::reset();
//
// Case 3b: a != b AND is_neq == 0 AND multiplier = 1 (dishonest)
// ----------------------------------------------------------------
let a = Field::<Circuit>::new(Mode::Private, five);
let b = Field::<Circuit>::new(Mode::Private, two);
let multiplier = Field::<Circuit>::new(Mode::Private, one);
let is_neq = Boolean::new(Mode::Private, false);
assert!(Circuit::is_satisfied());
enforce(a, b, multiplier, is_neq);
assert!(!Circuit::is_satisfied());
Circuit::reset();
//
// Case 4a: a != b AND is_neq == 1 AND multiplier = n [!= (a - b)^(-1)] (dishonest)
// ---------------------------------------------------------------------------------
let a = Field::<Circuit>::new(Mode::Private, five);
let b = Field::<Circuit>::new(Mode::Private, two);
let multiplier = Field::<Circuit>::new(Mode::Private, two);
let is_neq = Boolean::new(Mode::Private, true);
assert!(Circuit::is_satisfied());
enforce(a, b, multiplier, is_neq);
assert!(!Circuit::is_satisfied());
Circuit::reset();
//
// Case 4b: a != b AND is_neq == 1 AND multiplier = (a - b)^(-1) (honest)
// ---------------------------------------------------------------------------------
let a = Field::<Circuit>::new(Mode::Private, five);
let b = Field::<Circuit>::new(Mode::Private, two);
let multiplier =
Field::<Circuit>::new(Mode::Private, (five - two).inverse().expect("Failed to compute a native inverse"));
let is_neq = Boolean::new(Mode::Private, true);
assert!(Circuit::is_satisfied());
enforce(a, b, multiplier, is_neq);
assert!(Circuit::is_satisfied());
Circuit::reset();
}
}