snarkvm_circuit_types_group/
double.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment> Double for Group<E> {
    type Output = Group<E>;

    fn double(&self) -> Self::Output {
        // If `self` is constant *and* `self` is zero, then return `self`.
        if self.is_constant() && self.eject_value().is_zero() {
            self.clone()
        }
        // Otherwise, compute `self` + `self`.
        else {
            let a = Field::constant(console::Field::new(E::EDWARDS_A));
            let two = Field::one().double();

            // Compute xy, xx, yy, axx.
            let xy = &self.x * &self.y;
            let x2 = self.x.square();
            let y2 = self.y.square();
            let ax2 = &x2 * &a;

            // Compute x3 and y3.
            let (x3, y3) = witness!(|two, xy, y2, ax2| {
                // Assign x3 = (2xy) / (ax^2 + y^2).
                let x3 = xy.double() / (ax2 + y2);
                // Assign y3 = (y^2 - ax^2) / (2 - ax^2 - y^2).
                let y3 = (y2 - ax2) / (two - ax2 - y2);
                // Return (x3, y3).
                (x3, y3)
            });

            // Ensure x3 is well-formed.
            // x3 * (ax^2 + y^2) = 2xy
            let ax2_plus_y2 = &ax2 + &y2;
            let two_xy = xy.double();
            E::enforce(|| (&x3, &ax2_plus_y2, two_xy));

            // Ensure y3 is well-formed.
            // y3 * (2 - (ax^2 + y^2)) = y^2 - ax^2
            let y2_minus_a_x2 = y2 - ax2;
            let two_minus_ax2_minus_y2 = two - ax2_plus_y2;
            E::enforce(|| (&y3, two_minus_ax2_minus_y2, y2_minus_a_x2));

            Group { x: x3, y: y3 }
        }
    }
}

impl<E: Environment> Group<E> {
    /// Enforce that double = 2 * self.
    pub fn enforce_double(&self, double: &Group<E>) {
        let a = Field::constant(console::Field::new(E::EDWARDS_A));
        let two = Field::one().double();

        // Compute xy, xx, yy, axx.
        let xy = &self.x * &self.y;
        let x2 = self.x.square();
        let y2 = self.y.square();
        let ax2 = &x2 * &a;

        // Ensure double.x is the abscissa of the double of self.
        // double.x * (ax^2 + y^2) = 2xy
        let ax2_plus_y2 = &ax2 + &y2;
        let two_xy = xy.double();
        E::enforce(|| (&double.x, &ax2_plus_y2, two_xy));

        // Ensure double.y is the ordinate of the double of self.
        // double.y * (2 - (ax^2 + y^2)) = y^2 - ax^2
        let y2_minus_a_x2 = y2 - ax2;
        let two_minus_ax2_minus_y2 = two - ax2_plus_y2;
        E::enforce(|| (&double.y, two_minus_ax2_minus_y2, y2_minus_a_x2));
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use snarkvm_circuit_environment::Circuit;

    const ITERATIONS: u64 = 250;

    #[test]
    fn test_double() {
        let mut rng = TestRng::default();

        for i in 0..ITERATIONS {
            // Sample a random element.
            let point: console::Group<<Circuit as Environment>::Network> = Uniform::rand(&mut rng);
            let expected = point.double();

            // Constant variable
            let affine = Group::<Circuit>::new(Mode::Constant, point);

            Circuit::scope(format!("Constant {i}"), || {
                let candidate = affine.double();
                assert_eq!(expected, candidate.eject_value());
                assert_scope!(3, 0, 0, 0);
            });
            Circuit::reset();

            // Public variable
            let affine = Group::<Circuit>::new(Mode::Public, point);

            Circuit::scope(format!("Public {i}"), || {
                let candidate = affine.double();
                assert_eq!(expected, candidate.eject_value());
                assert_scope!(1, 0, 5, 5);
            });
            Circuit::reset();

            // Private variable
            let affine = Group::<Circuit>::new(Mode::Private, point);

            Circuit::scope(format!("Private {i}"), || {
                let candidate = affine.double();
                assert_eq!(expected, candidate.eject_value());
                assert_scope!(1, 0, 5, 5);
            });
            Circuit::reset();
        }
    }

    #[test]
    fn test_double_matches() {
        // Sample two random elements.
        let a = Uniform::rand(&mut TestRng::default());
        let expected = a + a;

        // Constant
        let candidate_a = Group::<Circuit>::new(Mode::Constant, a).double();
        assert_eq!(expected, candidate_a.eject_value());

        // Private
        let candidate_b = Group::<Circuit>::new(Mode::Private, a).double();
        assert_eq!(expected, candidate_b.eject_value());
    }
}