snarkvm_circuit_types_integers/
and.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment, I: IntegerType> BitAnd<Integer<E, I>> for Integer<E, I> {
    type Output = Integer<E, I>;

    /// Returns `(self AND other)`.
    fn bitand(self, other: Integer<E, I>) -> Self::Output {
        self & &other
    }
}

impl<E: Environment, I: IntegerType> BitAnd<Integer<E, I>> for &Integer<E, I> {
    type Output = Integer<E, I>;

    /// Returns `(self AND other)`.
    fn bitand(self, other: Integer<E, I>) -> Self::Output {
        self & &other
    }
}

impl<E: Environment, I: IntegerType> BitAnd<&Integer<E, I>> for Integer<E, I> {
    type Output = Integer<E, I>;

    /// Returns `(self AND other)`.
    fn bitand(self, other: &Integer<E, I>) -> Self::Output {
        &self & other
    }
}

impl<E: Environment, I: IntegerType> BitAnd<&Integer<E, I>> for &Integer<E, I> {
    type Output = Integer<E, I>;

    /// Returns `(self AND other)`.
    fn bitand(self, other: &Integer<E, I>) -> Self::Output {
        let mut output = self.clone();
        output &= other;
        output
    }
}

impl<E: Environment, I: IntegerType> BitAndAssign<Integer<E, I>> for Integer<E, I> {
    /// Sets `self` as `(self AND other)`.
    fn bitand_assign(&mut self, other: Integer<E, I>) {
        *self &= &other;
    }
}

impl<E: Environment, I: IntegerType> BitAndAssign<&Integer<E, I>> for Integer<E, I> {
    /// Sets `self` as `(self AND other)`.
    fn bitand_assign(&mut self, other: &Integer<E, I>) {
        // Stores the bitwise AND of `self` and `other` in `self`.
        *self = Self {
            bits_le: self.bits_le.iter().zip_eq(other.bits_le.iter()).map(|(a, b)| a & b).collect(),
            phantom: Default::default(),
        }
    }
}

impl<E: Environment, I: IntegerType> Metrics<dyn BitAnd<Integer<E, I>, Output = Integer<E, I>>> for Integer<E, I> {
    type Case = (Mode, Mode);

    fn count(case: &Self::Case) -> Count {
        match (case.0, case.1) {
            (Mode::Constant, _) | (_, Mode::Constant) => Count::is(0, 0, 0, 0),
            (_, _) => Count::is(0, 0, I::BITS, I::BITS),
        }
    }
}

impl<E: Environment, I: IntegerType> OutputMode<dyn BitAnd<Integer<E, I>, Output = Integer<E, I>>> for Integer<E, I> {
    type Case = (CircuitType<Integer<E, I>>, CircuitType<Integer<E, I>>);

    fn output_mode(case: &Self::Case) -> Mode {
        match (case.0.mode(), case.1.mode()) {
            (Mode::Constant, Mode::Constant) => Mode::Constant,
            (Mode::Constant, mode_b) => match &case.0 {
                // Determine if the constant is all zeros.
                CircuitType::Constant(constant) => match constant.eject_value().is_zero() {
                    true => Mode::Constant,
                    false => mode_b,
                },
                _ => E::halt(format!("The constant is required to determine the output mode of Constant AND {mode_b}")),
            },
            (mode_a, Mode::Constant) => match &case.1 {
                // Determine if the constant is all zeros.
                CircuitType::Constant(constant) => match constant.eject_value().is_zero() {
                    true => Mode::Constant,
                    false => mode_a,
                },
                _ => E::halt(format!("The constant is required to determine the output mode of {mode_a} AND Constant")),
            },
            (_, _) => Mode::Private,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use snarkvm_circuit_environment::Circuit;

    use std::ops::RangeInclusive;

    const ITERATIONS: u64 = 128;

    #[allow(clippy::needless_borrow)]
    fn check_and<I: IntegerType + BitAnd<Output = I>>(
        name: &str,
        first: console::Integer<<Circuit as Environment>::Network, I>,
        second: console::Integer<<Circuit as Environment>::Network, I>,
        mode_a: Mode,
        mode_b: Mode,
    ) {
        let a = Integer::<Circuit, I>::new(mode_a, first);
        let b = Integer::new(mode_b, second);
        let expected = first & second;
        Circuit::scope(name, || {
            let candidate = (&a).bitand(&b);
            assert_eq!(expected, candidate.eject_value());
            assert_count!(BitAnd(Integer<I>, Integer<I>) => Integer<I>, &(mode_a, mode_b));
            assert_output_mode!(BitAnd(Integer<I>, Integer<I>) => Integer<I>, &(CircuitType::from(&a), CircuitType::from(&b)), candidate);
        });
        Circuit::reset();
    }

    fn run_test<I: IntegerType + BitAnd<Output = I>>(mode_a: Mode, mode_b: Mode) {
        let mut rng = TestRng::default();

        for i in 0..ITERATIONS {
            let first = Uniform::rand(&mut rng);
            let second = Uniform::rand(&mut rng);

            let name = format!("BitAnd: ({mode_a} & {mode_b}) {i}");
            check_and::<I>(&name, first, second, mode_a, mode_b);
            check_and::<I>(&name, second, first, mode_a, mode_b); // Commute the operation.

            let name = format!("BitAnd Identity: ({mode_a} & {mode_b}) {i}");
            let identity = if I::is_signed() { -console::Integer::one() } else { console::Integer::MAX };
            check_and::<I>(&name, identity, first, mode_a, mode_b);
            check_and::<I>(&name, first, identity, mode_a, mode_b); // Commute the operation.
        }

        // Check cases common to signed and unsigned integers.
        check_and::<I>("0 & MAX", console::Integer::zero(), console::Integer::MAX, mode_a, mode_b);
        check_and::<I>("MAX & 0", console::Integer::MAX, console::Integer::zero(), mode_a, mode_b);
        check_and::<I>("0 & MIN", console::Integer::zero(), console::Integer::MIN, mode_a, mode_b);
        check_and::<I>("MIN & 0", console::Integer::MIN, console::Integer::zero(), mode_a, mode_b);
    }

    fn run_exhaustive_test<I: IntegerType + BitAnd<Output = I>>(mode_a: Mode, mode_b: Mode)
    where
        RangeInclusive<I>: Iterator<Item = I>,
    {
        for first in I::MIN..=I::MAX {
            for second in I::MIN..=I::MAX {
                let first = console::Integer::<_, I>::new(first);
                let second = console::Integer::<_, I>::new(second);

                let name = format!("BitAnd: ({first} & {second})");
                check_and::<I>(&name, first, second, mode_a, mode_b);
            }
        }
    }

    test_integer_binary!(run_test, i8, bitand);
    test_integer_binary!(run_test, i16, bitand);
    test_integer_binary!(run_test, i32, bitand);
    test_integer_binary!(run_test, i64, bitand);
    test_integer_binary!(run_test, i128, bitand);

    test_integer_binary!(run_test, u8, bitand);
    test_integer_binary!(run_test, u16, bitand);
    test_integer_binary!(run_test, u32, bitand);
    test_integer_binary!(run_test, u64, bitand);
    test_integer_binary!(run_test, u128, bitand);

    test_integer_binary!(#[ignore], run_exhaustive_test, u8, bitand, exhaustive);
    test_integer_binary!(#[ignore], run_exhaustive_test, i8, bitand, exhaustive);
}