snarkvm_circuit_types_integers/
equal.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment, I: IntegerType> Equal<Self> for Integer<E, I> {
    type Output = Boolean<E>;

    ///
    /// Returns `true` if `self` and `other` are equal.
    ///
    fn is_equal(&self, other: &Self) -> Self::Output {
        // Determine if this operation is constant or variable.
        match self.is_constant() && other.is_constant() {
            true => self
                .bits_le
                .iter()
                .zip_eq(other.bits_le.iter())
                .map(|(this, that)| this.is_equal(that))
                .fold(Boolean::constant(true), |a, b| a & b),
            false => {
                // Instead of comparing the bits of `self` and `other` directly, the integers are
                // converted into a field elements, and checked if they are equivalent as field elements.
                // Note: This is safe as the field is larger than the maximum integer type supported.
                self.to_field().is_equal(&other.to_field())
            }
        }
    }

    ///
    /// Returns `true` if `self` and `other` are *not* equal.
    ///
    /// This method constructs a boolean that indicates if
    /// `self` and `other ` are *not* equal to each other.
    ///
    fn is_not_equal(&self, other: &Self) -> Self::Output {
        !self.is_equal(other)
    }
}

impl<E: Environment, I: IntegerType> Metrics<dyn Equal<Integer<E, I>, Output = Boolean<E>>> for Integer<E, I> {
    type Case = (Mode, Mode);

    fn count(case: &Self::Case) -> Count {
        match case.0.is_constant() && case.1.is_constant() {
            true => Count::is(0, 0, 0, 0),
            false => Count::is(0, 0, 2, 2),
        }
    }
}

impl<E: Environment, I: IntegerType> OutputMode<dyn Equal<Integer<E, I>, Output = Boolean<E>>> for Integer<E, I> {
    type Case = (Mode, Mode);

    fn output_mode(case: &Self::Case) -> Mode {
        match case.0.is_constant() && case.1.is_constant() {
            true => Mode::Constant,
            false => Mode::Private,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use snarkvm_circuit_environment::Circuit;

    use std::ops::RangeInclusive;

    const ITERATIONS: u64 = 100;

    fn check_equals<I: IntegerType>(
        name: &str,
        first: console::Integer<<Circuit as Environment>::Network, I>,
        second: console::Integer<<Circuit as Environment>::Network, I>,
        mode_a: Mode,
        mode_b: Mode,
    ) {
        let expected = first == second;
        let a = Integer::<Circuit, I>::new(mode_a, first);
        let b = Integer::<Circuit, I>::new(mode_b, second);
        Circuit::scope(name, || {
            let candidate = a.is_equal(&b);
            assert_eq!(expected, candidate.eject_value());
            assert_count!(Equal(Integer<I>, Integer<I>) => Boolean, &(mode_a, mode_b));
            assert_output_mode!(Equal(Integer<I>, Integer<I>) => Boolean, &(mode_a, mode_b), candidate);
        });
        Circuit::reset();
    }

    fn run_test<I: IntegerType>(mode_a: Mode, mode_b: Mode) {
        let mut rng = TestRng::default();

        for i in 0..ITERATIONS {
            let first = Uniform::rand(&mut rng);
            let second = Uniform::rand(&mut rng);

            let name = format!("Eq: {mode_a} == {mode_b} {i}");
            check_equals::<I>(&name, first, second, mode_a, mode_b);
            check_equals::<I>(&name, second, first, mode_a, mode_b); // Commute the operation.
        }
    }

    fn run_exhaustive_test<I: IntegerType>(mode_a: Mode, mode_b: Mode)
    where
        RangeInclusive<I>: Iterator<Item = I>,
    {
        for first in I::MIN..=I::MAX {
            for second in I::MIN..=I::MAX {
                let first = console::Integer::<_, I>::new(first);
                let second = console::Integer::<_, I>::new(second);

                let name = format!("Equals: ({first} == {second})");
                check_equals::<I>(&name, first, second, mode_a, mode_b);
            }
        }
    }

    test_integer_binary!(run_test, i8, equals);
    test_integer_binary!(run_test, i16, equals);
    test_integer_binary!(run_test, i32, equals);
    test_integer_binary!(run_test, i64, equals);
    test_integer_binary!(run_test, i128, equals);

    test_integer_binary!(run_test, u8, equals);
    test_integer_binary!(run_test, u16, equals);
    test_integer_binary!(run_test, u32, equals);
    test_integer_binary!(run_test, u64, equals);
    test_integer_binary!(run_test, u128, equals);

    test_integer_binary!(#[ignore], run_exhaustive_test, u8, equals, exhaustive);
    test_integer_binary!(#[ignore], run_exhaustive_test, i8, equals, exhaustive);
}