1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<N: Network> Signature<N> {
/// Returns a signature `(challenge, response, compute_key)` for a given message and RNG, where:
/// challenge := HashToScalar(nonce * G, pk_sig, pr_sig, address, message)
/// response := nonce - challenge * private_key.sk_sig()
pub fn sign<R: Rng + CryptoRng>(private_key: &PrivateKey<N>, message: &[Field<N>], rng: &mut R) -> Result<Self> {
// Ensure the number of field elements does not exceed the maximum allowed size.
if message.len() > N::MAX_DATA_SIZE_IN_FIELDS as usize {
bail!("Cannot sign the message: the message exceeds maximum allowed size")
}
// Sample a random nonce from the scalar field.
let nonce = Scalar::rand(rng);
// Compute `g_r` as `nonce * G`.
let g_r = N::g_scalar_multiply(&nonce);
// Derive the compute key from the private key.
let compute_key = ComputeKey::try_from(private_key)?;
// Retrieve pk_sig.
let pk_sig = compute_key.pk_sig();
// Retrieve pr_sig.
let pr_sig = compute_key.pr_sig();
// Derive the address from the compute key.
let address = Address::try_from(compute_key)?;
// Construct the hash input as (r * G, pk_sig, pr_sig, address, message).
let mut preimage = Vec::with_capacity(4 + message.len());
preimage.extend([g_r, pk_sig, pr_sig, *address].map(|point| point.to_x_coordinate()));
preimage.extend(message);
// Compute the verifier challenge.
let challenge = N::hash_to_scalar_psd8(&preimage)?;
// Compute the prover response.
let response = nonce - (challenge * private_key.sk_sig());
// Output the signature.
Ok(Self { challenge, response, compute_key })
}
/// Returns a signature for the given message (as bytes) using the private key.
pub fn sign_bytes<R: Rng + CryptoRng>(
private_key: &PrivateKey<N>,
message: &[u8],
rng: &mut R,
) -> Result<Signature<N>> {
// Convert the message into bits, and sign the message.
Self::sign_bits(private_key, &message.to_bits_le(), rng)
}
/// Returns a signature for the given message (as bits) using the private key.
pub fn sign_bits<R: Rng + CryptoRng>(
private_key: &PrivateKey<N>,
message: &[bool],
rng: &mut R,
) -> Result<Signature<N>> {
// Pack the bits into field elements.
let fields =
message.chunks(Field::<N>::size_in_data_bits()).map(Field::from_bits_le).collect::<Result<Vec<_>>>()?;
// Sign the message.
Self::sign(private_key, &fields, rng)
}
}