1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<E: Environment> Elligator2<E> {
/// Returns the encoded affine group element and sign, given a field element.
pub fn encode(input: &Field<E>) -> Result<(Group<E>, bool)> {
// Compute the encoding of the input field element.
let (encoding, sign_high) = Self::encode_without_cofactor_clear(input)?;
// Cofactor clear the twisted Edwards element (x, y).
let group = encoding.mul_by_cofactor().to_affine();
ensure!(group.is_on_curve(), "Elligator2 failed: element is not on curve");
ensure!(group.is_in_correct_subgroup_assuming_on_curve(), "Elligator2 failed: element in incorrect subgroup");
Ok((Group::new(group), sign_high))
}
/// Returns the encoded affine group element and sign, given a field element.
pub(crate) fn encode_without_cofactor_clear(input: &Field<E>) -> Result<(Group<E>, bool)> {
ensure!(
Group::<E>::EDWARDS_D.legendre().is_qnr(),
"D on the twisted Edwards curve must be a quadratic nonresidue"
);
ensure!(!input.is_zero(), "Inputs to Elligator2 must be nonzero (inverses will fail)");
let one = Field::<E>::one();
// Store the sign of the input, to be returned with the output.
let sign_high = input > &input.neg();
// Compute the mapping from Fq to E(Fq) as a Montgomery element (u, v).
let (u, v) = {
// Compute the coefficients for the Weierstrass form: y^2 == x^3 + A * x^2 + B * x.
let (a, b) = match Group::<E>::MONTGOMERY_B.inverse() {
Ok(b_inverse) => (Group::MONTGOMERY_A * b_inverse, b_inverse.square()),
Err(_) => bail!("Montgomery B must be invertible in order to use Elligator2"),
};
// Let (u, r) = (D, input).
let (u, r) = (Group::EDWARDS_D, input);
// Let ur2 = u * r^2;
let ur2 = u * r.square();
// Ensure A^2 * ur^2 != B(1 + ur^2)^2.
ensure!(a.square() * ur2 != b * (one + ur2).square(), "Elligator2 failed: A^2 * ur^2 == B(1 + ur^2)^2");
// Let v = -A / (1 + ur^2).
let v = -a * (one + ur2).inverse().map_err(|_| anyhow!("Elligator2 failed: (1 + ur^2) == 0"))?;
// Ensure v is nonzero.
ensure!(!v.is_zero(), "Elligator2 failed: v == 0");
// Let e = legendre(v^3 + Av^2 + Bv).
let v2 = v.square();
let e = ((v2 * v) + (a * v2) + (b * v)).legendre();
// Ensure e is nonzero.
ensure!(!e.is_zero(), "Elligator2 failed: e == 0");
// Let x = ev - ((1 - e) * A/2).
let x = match e {
LegendreSymbol::Zero => -a * Field::<E>::half(),
LegendreSymbol::QuadraticResidue => v,
LegendreSymbol::QuadraticNonResidue => -v - a,
};
// Ensure x is nonzero.
ensure!(!x.is_zero(), "Elligator2 failed: x == 0");
// Let y = -e * sqrt(x^3 + Ax^2 + Bx).
let x2 = x.square();
let rhs = (x2 * x) + (a * x2) + (b * x);
let value = rhs.square_root().map_err(|_| anyhow!("Elligator2 failed: sqrt(x^3 + Ax^2 + Bx) failed"))?;
let y = match e {
LegendreSymbol::Zero => Field::<E>::zero(),
LegendreSymbol::QuadraticResidue => -value,
LegendreSymbol::QuadraticNonResidue => value,
};
// Ensure y is nonzero.
ensure!(!y.is_zero(), "Elligator2 failed: y == 0");
// Ensure (x, y) is a valid Weierstrass element on: y^2 == x^3 + A * x^2 + B * x.
ensure!(y.square() == rhs, "Elligator2 failed: y^2 != x^3 + A * x^2 + B * x");
// Convert the Weierstrass element (x, y) to Montgomery element (u, v).
let u = x * Group::MONTGOMERY_B;
let v = y * Group::MONTGOMERY_B;
// Ensure (u, v) is a valid Montgomery element on: B * v^2 == u^3 + A * u^2 + u
let u2 = u.square();
ensure!(
Group::MONTGOMERY_B * v.square() == (u2 * u) + (Group::MONTGOMERY_A * u2) + u,
"Elligator2 failed: B * v^2 != u^3 + A * u^2 + u"
);
(u, v)
};
// Convert the Montgomery element (u, v) to the twisted Edwards element (x, y).
let x = u * v.inverse().map_err(|_| anyhow!("Elligator2 failed: v == 0"))?;
let y = (u - one) * (u + one).inverse().map_err(|_| anyhow!("Elligator2 failed: (u + 1) == 0"))?;
// Recover the point from the twisted Edwards element (x, y).
let point = Group::from_xy_coordinates_unchecked(x, y);
// Ensure the recovered point is on the curve.
ensure!(point.to_affine().is_on_curve(), "Elligator2 failed: point is not on the curve");
// Return the recovered point.
Ok((point, sign_high))
}
}