1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/// Blake2Xs function
///
/// This implementation is based on the BLAKE2Xs specification in Section 2 of
/// <https://www.blake2.net/blake2x.pdf>
mod hash_to_curve;
pub struct Blake2Xs;
impl Blake2Xs {
/// Returns the BLAKE2Xs digest given:
/// - `input` is an input message as a slice of bytes,
/// - `XOF_DIGEST_LENGTH` is a `u16` set to the length of the final output digest in bytes,
/// - `PERSONALIZATION` is a `u64` representing a UTF-8 string of 8 characters.
fn evaluate(input: &[u8], xof_digest_length: u16, persona: &[u8]) -> Vec<u8> {
assert!(xof_digest_length > 0, "Output digest must be of non-zero length");
assert!(persona.len() <= 8, "Personalization may be at most 8 characters");
// Start by computing the digest of the input bytes.
let xof_digest_length_node_offset = (xof_digest_length as u64) << 32;
let input_digest = blake2s_simd::Params::new()
.hash_length(32)
.node_offset(xof_digest_length_node_offset)
.personal(persona)
.hash(input);
let mut output = vec![];
let num_rounds = xof_digest_length.saturating_add(31) / 32;
for node_offset in 0..num_rounds {
// Calculate the digest length for this round.
let is_final_round = node_offset == num_rounds - 1;
let has_remainder = xof_digest_length % 32 != 0;
let digest_length = match is_final_round && has_remainder {
true => (xof_digest_length % 32) as usize,
false => 32,
};
// Compute the next part of the output digest.
output.extend_from_slice(
blake2s_simd::Params::new()
.hash_length(digest_length)
.fanout(0)
.max_depth(0)
.max_leaf_length(32)
.node_offset(xof_digest_length_node_offset | (node_offset as u64))
.inner_hash_length(32)
.personal(persona)
.hash(input_digest.as_bytes())
.as_bytes(),
);
}
output
}
}
#[cfg(test)]
mod tests {
use crate::Blake2Xs;
use serde::Deserialize;
#[derive(Deserialize)]
struct Case {
hash: String,
#[serde(rename = "in")]
input: String,
key: String,
#[serde(rename = "out")]
output: String,
}
#[test]
fn test_blake2xs() {
// Run test vector cases.
let vectors: Vec<Case> = serde_json::from_str(include_str!("./resources/blake2-kat.json")).unwrap();
for case in vectors.iter().filter(|v| &v.hash == "blake2xs" && v.key.is_empty()) {
let input = hex::decode(case.input.as_bytes()).unwrap();
let xof_digest_length = u16::try_from(case.output.len()).unwrap() / 2;
let output = hex::encode(Blake2Xs::evaluate(&input, xof_digest_length, "".as_bytes()));
assert_eq!(output, case.output);
}
}
#[test]
fn test_blake2s() {
// Run test vector cases for blake2s as a sanity check for the underlying impl.
let vectors: Vec<Case> = serde_json::from_str(include_str!("./resources/blake2-kat.json")).unwrap();
for case in vectors.iter().filter(|v| &v.hash == "blake2s" && v.key.is_empty()) {
let input = hex::decode(case.input.as_bytes()).unwrap();
let output = hex::encode(blake2s_simd::Params::new().personal(&0u64.to_le_bytes()).hash(&input).as_bytes());
assert_eq!(output, case.output);
}
}
}