1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod helpers;
pub use helpers::*;

mod path;
pub use path::*;

#[cfg(test)]
mod tests;

use snarkvm_console_types::prelude::*;

use aleo_std::prelude::*;

use std::collections::BTreeMap;

#[cfg(not(feature = "serial"))]
use rayon::prelude::*;

#[derive(Clone)]
pub struct MerkleTree<E: Environment, LH: LeafHash<Hash = PH::Hash>, PH: PathHash<Hash = Field<E>>, const DEPTH: u8> {
    /// The leaf hasher for the Merkle tree.
    leaf_hasher: LH,
    /// The path hasher for the Merkle tree.
    path_hasher: PH,
    /// The computed root of the full Merkle tree.
    root: PH::Hash,
    /// The internal hashes, from root to hashed leaves, of the full Merkle tree.
    tree: Vec<PH::Hash>,
    /// The canonical empty hash.
    empty_hash: Field<E>,
    /// The number of hashed leaves in the tree.
    number_of_leaves: usize,
}

impl<E: Environment, LH: LeafHash<Hash = PH::Hash>, PH: PathHash<Hash = Field<E>>, const DEPTH: u8>
    MerkleTree<E, LH, PH, DEPTH>
{
    #[inline]
    /// Initializes a new Merkle tree with the given leaves.
    pub fn new(leaf_hasher: &LH, path_hasher: &PH, leaves: &[LH::Leaf]) -> Result<Self> {
        let timer = timer!("MerkleTree::new");

        // Ensure the Merkle tree depth is greater than 0.
        ensure!(DEPTH > 0, "Merkle tree depth must be greater than 0");
        // Ensure the Merkle tree depth is less than or equal to 64.
        ensure!(DEPTH <= 64u8, "Merkle tree depth must be less than or equal to 64");

        // Compute the maximum number of leaves.
        let max_leaves = match leaves.len().checked_next_power_of_two() {
            Some(num_leaves) => num_leaves,
            None => bail!("Integer overflow when computing the maximum number of leaves in the Merkle tree"),
        };

        // Compute the number of nodes.
        let num_nodes = max_leaves - 1;
        // Compute the tree size as the maximum number of leaves plus the number of nodes.
        let tree_size = max_leaves + num_nodes;
        // Compute the number of levels in the Merkle tree (i.e. log2(tree_size)).
        let tree_depth = tree_depth::<DEPTH>(tree_size)?;
        // Compute the number of padded levels.
        let padding_depth = DEPTH - tree_depth;

        // Compute the empty hash.
        let empty_hash = path_hasher.hash_empty()?;

        // Initialize the Merkle tree.
        let mut tree = vec![empty_hash; tree_size];

        // Compute and store each leaf hash.
        tree[num_nodes..num_nodes + leaves.len()].copy_from_slice(&leaf_hasher.hash_leaves(leaves)?);
        lap!(timer, "Hashed {} leaves", leaves.len());

        // Compute and store the hashes for each level, iterating from the penultimate level to the root level.
        let mut start_index = num_nodes;
        // Compute the start index of the current level.
        while let Some(start) = parent(start_index) {
            // Compute the end index of the current level.
            let end = left_child(start);
            // Construct the children for each node in the current level.
            let tuples = (start..end).map(|i| (tree[left_child(i)], tree[right_child(i)])).collect::<Vec<_>>();
            // Compute and store the hashes for each node in the current level.
            tree[start..end].copy_from_slice(&path_hasher.hash_all_children(&tuples)?);
            // Update the start index for the next level.
            start_index = start;
        }
        lap!(timer, "Hashed {} levels", tree_depth);

        // Compute the root hash, by iterating from the root level up to `DEPTH`.
        let mut root_hash = tree[0];
        for _ in 0..padding_depth {
            // Update the root hash, by hashing the current root hash with the empty hash.
            root_hash = path_hasher.hash_children(&root_hash, &empty_hash)?;
        }
        lap!(timer, "Hashed {} padding levels", padding_depth);

        finish!(timer);

        Ok(Self {
            leaf_hasher: leaf_hasher.clone(),
            path_hasher: path_hasher.clone(),
            root: root_hash,
            tree,
            empty_hash,
            number_of_leaves: leaves.len(),
        })
    }

    #[inline]
    /// Returns a new Merkle tree with the given new leaves appended to it.
    pub fn prepare_append(&self, new_leaves: &[LH::Leaf]) -> Result<Self> {
        let timer = timer!("MerkleTree::prepare_append");

        // Compute the maximum number of leaves.
        let max_leaves = match (self.number_of_leaves + new_leaves.len()).checked_next_power_of_two() {
            Some(num_leaves) => num_leaves,
            None => bail!("Integer overflow when computing the maximum number of leaves in the Merkle tree"),
        };
        // Compute the number of nodes.
        let num_nodes = max_leaves - 1;
        // Compute the tree size as the maximum number of leaves plus the number of nodes.
        let tree_size = num_nodes + max_leaves;
        // Compute the number of levels in the Merkle tree (i.e. log2(tree_size)).
        let tree_depth = tree_depth::<DEPTH>(tree_size)?;
        // Compute the number of padded levels.
        let padding_depth = DEPTH - tree_depth;

        // Initialize the Merkle tree.
        let mut tree = vec![self.empty_hash; num_nodes];
        // Extend the new Merkle tree with the existing leaf hashes.
        tree.extend(self.leaf_hashes()?);
        // Extend the new Merkle tree with the new leaf hashes.
        tree.extend(&self.leaf_hasher.hash_leaves(new_leaves)?);
        // Resize the new Merkle tree with empty hashes to pad up to `tree_size`.
        tree.resize(tree_size, self.empty_hash);
        lap!(timer, "Hashed {} new leaves", new_leaves.len());

        // Initialize a start index to track the starting index of the current level.
        let start_index = num_nodes;
        // Initialize a middle index to separate the precomputed indices from the new indices that need to be computed.
        let middle_index = num_nodes + self.number_of_leaves;
        // Initialize a precompute index to track the starting index of each precomputed level.
        let start_precompute_index = match self.number_of_leaves.checked_next_power_of_two() {
            Some(num_leaves) => num_leaves - 1,
            None => bail!("Integer overflow when computing the Merkle tree precompute index"),
        };
        // Initialize a precompute index to track the middle index of each precomputed level.
        let middle_precompute_index = match num_nodes == start_precompute_index {
            // If the old tree and new tree are of the same size, then we can copy over the right half of the old tree.
            true => Some(start_precompute_index + self.number_of_leaves + new_leaves.len() + 1),
            // Otherwise, we need to compute the right half of the new tree.
            false => None,
        };

        // Compute and store the hashes for each level, iterating from the penultimate level to the root level.
        self.compute_updated_tree(
            &mut tree,
            start_index,
            middle_index,
            start_precompute_index,
            middle_precompute_index,
        )?;

        // Compute the root hash, by iterating from the root level up to `DEPTH`.
        let mut root_hash = tree[0];
        for _ in 0..padding_depth {
            // Update the root hash, by hashing the current root hash with the empty hash.
            root_hash = self.path_hasher.hash_children(&root_hash, &self.empty_hash)?;
        }
        lap!(timer, "Hashed {} padding levels", padding_depth);

        finish!(timer);

        Ok(Self {
            leaf_hasher: self.leaf_hasher.clone(),
            path_hasher: self.path_hasher.clone(),
            root: root_hash,
            tree,
            empty_hash: self.empty_hash,
            number_of_leaves: self.number_of_leaves + new_leaves.len(),
        })
    }

    #[inline]
    /// Updates the Merkle tree with the given new leaves appended to it.
    pub fn append(&mut self, new_leaves: &[LH::Leaf]) -> Result<()> {
        let timer = timer!("MerkleTree::append");

        // Compute the updated Merkle tree with the new leaves.
        let updated_tree = self.prepare_append(new_leaves)?;
        // Update the tree at the very end, so the original tree is not altered in case of failure.
        *self = updated_tree;

        finish!(timer);
        Ok(())
    }

    #[inline]
    /// Updates the Merkle tree at the location of the given leaf index with the new leaf.
    pub fn update(&mut self, leaf_index: usize, new_leaf: &LH::Leaf) -> Result<()> {
        let timer = timer!("MerkleTree::update");

        // Compute the updated Merkle tree with the new leaves.
        let updated_tree = self.prepare_update(leaf_index, new_leaf)?;
        // Update the tree at the very end, so the original tree is not altered in case of failure.
        *self = updated_tree;

        finish!(timer);
        Ok(())
    }

    #[inline]
    /// Returns a new Merkle tree with updates at the location of the given leaf index with the new leaf.
    pub fn prepare_update(&self, leaf_index: usize, new_leaf: &LH::Leaf) -> Result<Self> {
        let timer = timer!("MerkleTree::prepare_update");

        // Check that the leaf index is within the bounds of the Merkle tree.
        ensure!(
            leaf_index < self.number_of_leaves,
            "Leaf index must be less than the number of leaves in the Merkle tree {leaf_index} , {}",
            self.number_of_leaves
        );

        // Allocate a vector to store the path hashes.
        let mut path_hashes = Vec::with_capacity(DEPTH as usize);

        // Compute and add the new leaf hash to the path hashes.
        path_hashes.push(self.leaf_hasher.hash_leaf(new_leaf)?);
        lap!(timer, "Hashed 1 new leaf");

        // Compute the start index (on the left) for the leaf hashes level in the Merkle tree.
        let start = match self.number_of_leaves.checked_next_power_of_two() {
            Some(num_leaves) => num_leaves - 1,
            None => bail!("Integer overflow when computing the Merkle tree start index"),
        };

        // Compute the new hashes for the path from the leaf to the root.
        let mut index = start + leaf_index;
        while let Some(parent) = parent(index) {
            // Get the left and right child hashes of the parent.
            let (left, right) = match is_left_child(index) {
                true => (path_hashes.last().unwrap(), &self.tree[right_child(parent)]),
                false => (&self.tree[left_child(parent)], path_hashes.last().unwrap()),
            };
            // Compute and add the new parent hash to the path hashes.
            path_hashes.push(self.path_hasher.hash_children(left, right)?);
            // Update the index to the parent.
            index = parent;
        }

        // Compute the number of levels in the Merkle tree (i.e. log2(tree_size)).
        let tree_depth = tree_depth::<DEPTH>(self.tree.len())?;
        // Compute the padding depth.
        let padding_depth = DEPTH - tree_depth;

        // Update the root hash.
        // This unwrap is safe, as the path hashes vector is guaranteed to have at least one element.
        let mut root_hash = *path_hashes.last().unwrap();
        for _ in 0..padding_depth {
            // Update the root hash, by hashing the current root hash with the empty hash.
            root_hash = self.path_hasher.hash_children(&root_hash, &self.empty_hash)?;
        }
        lap!(timer, "Hashed {} padding levels", padding_depth);

        // Initialize the Merkle tree.
        let mut tree = Vec::with_capacity(self.tree.len());
        // Extend the new Merkle tree with the existing leaf hashes.
        tree.extend(&self.tree);

        // Update the rest of the tree with the new path hashes.
        let mut index = Some(start + leaf_index);
        for path_hash in path_hashes {
            tree[index.unwrap()] = path_hash;
            index = parent(index.unwrap());
        }

        finish!(timer);

        Ok(Self {
            leaf_hasher: self.leaf_hasher.clone(),
            path_hasher: self.path_hasher.clone(),
            root: root_hash,
            tree,
            empty_hash: self.empty_hash,
            number_of_leaves: self.number_of_leaves,
        })
    }

    #[inline]
    /// Updates the Merkle tree at the location of the given leaf indices with the new leaves.
    pub fn update_many(&mut self, updates: &BTreeMap<usize, LH::Leaf>) -> Result<()> {
        let timer = timer!("MerkleTree::update_many");

        // Check that there are updates to perform.
        ensure!(!updates.is_empty(), "There must be at least one leaf to update in the Merkle tree");

        // Check that the latest leaf index is less than number of leaves in the Merkle tree.
        // Note: This unwrap is safe since updates is guaranteed to be non-empty.
        ensure!(
            *updates.last_key_value().unwrap().0 < self.number_of_leaves,
            "Leaf index must be less than the number of leaves in the Merkle tree"
        );

        // Compute the start index (on the left) for the leaf hashes level in the Merkle tree.
        let start = match self.number_of_leaves.checked_next_power_of_two() {
            Some(num_leaves) => num_leaves - 1,
            None => bail!("Integer overflow when computing the Merkle tree start index"),
        };

        // A helper to compute the leaf hash.
        let hash_update = |(leaf_index, leaf): &(&usize, &LH::Leaf)| {
            self.leaf_hasher.hash_leaf(leaf).map(|hash| (start + **leaf_index, hash))
        };

        // Hash the leaves and add them to the updated hashes.
        let leaf_hashes: Vec<(usize, LH::Hash)> = match updates.len() {
            0..=100 => updates.iter().map(|update| hash_update(&update)).collect::<Result<Vec<_>>>()?,
            _ => cfg_iter!(updates).map(|update| hash_update(&update)).collect::<Result<Vec<_>>>()?,
        };
        lap!(timer, "Hashed {} new leaves", leaf_hashes.len());

        // Store the updated hashes by level.
        let mut updated_hashes = vec![leaf_hashes];

        // A helper function to compute the path hashes for a given level.
        type Update<PH> = (usize, (<PH as PathHash>::Hash, <PH as PathHash>::Hash));
        let compute_path_hashes = |inputs: &[Update<PH>]| match inputs.len() {
            0..=100 => inputs
                .iter()
                .map(|(index, (left, right))| self.path_hasher.hash_children(left, right).map(|hash| (*index, hash)))
                .collect::<Result<Vec<_>>>(),
            _ => cfg_iter!(inputs)
                .map(|(index, (left, right))| self.path_hasher.hash_children(left, right).map(|hash| (*index, hash)))
                .collect::<Result<Vec<_>>>(),
        };

        // Compute the depth of the tree. This corresponds to the number of levels of hashes in the tree.
        let tree_depth = tree_depth::<DEPTH>(self.tree.len())?;
        // Allocate a vector to store the inputs to the path hasher.
        let mut inputs = Vec::with_capacity(updated_hashes[0].len());
        // For each level in the tree, compute the path hashes.
        // In the first iteration, we compute the path hashes for the updated leaf hashes.
        // In the subsequent iterations, we compute the path hashes for the updated path hashes, until we reach the root.
        for level in 0..tree_depth as usize {
            let mut current = 0;
            while current < updated_hashes[level].len() {
                let (current_leaf_index, current_leaf_hash) = updated_hashes[level][current];
                // Get the sibling of the current leaf.
                let sibling_leaf_index = match sibling(current_leaf_index) {
                    Some(sibling_index) => sibling_index,
                    // If there is no sibling, then we have reached the root.
                    None => break,
                };
                // Check if the sibling hash is the next hash in the vector.
                let sibling_is_next_hash = match current + 1 < updated_hashes[level].len() {
                    true => updated_hashes[level][current + 1].0 == sibling_leaf_index,
                    false => false,
                };
                // Get the sibling hash.
                // Note: This algorithm assumes that the sibling hash is either the next hash in the vector,
                // or in the original Merkle tree. Consequently, updates need to be provided in sequential order.
                // This is enforced by the type of `updates: `BTreeMap<usize, LH::Leaf>`.
                // If this assumption is violated, then the algorithm will compute incorrect path hashes in the Merkle tree.
                let sibling_leaf_hash = match sibling_is_next_hash {
                    true => updated_hashes[level][current + 1].1,
                    false => self.tree[sibling_leaf_index],
                };
                // Order the current and sibling hashes.
                let (left, right) = match is_left_child(current_leaf_index) {
                    true => (current_leaf_hash, sibling_leaf_hash),
                    false => (sibling_leaf_hash, current_leaf_hash),
                };
                // Compute the parent index.
                // Note that this unwrap is safe, since we check that the `current_leaf_index` is not the root.
                let parent_index = parent(current_leaf_index).unwrap();
                // Add the parent hash to the updated hashes.
                inputs.push((parent_index, (left, right)));
                // Update the current index.
                match sibling_is_next_hash {
                    true => current += 2,
                    false => current += 1,
                }
            }
            // Compute the path hashes for the current level.
            let path_hashes = compute_path_hashes(&inputs)?;
            // Add the path hashes to the updated hashes.
            updated_hashes.push(path_hashes);
            // Clear the inputs.
            inputs.clear();
        }

        // Compute the padding depth.
        let padding_depth = DEPTH - tree_depth;

        // Update the root hash.
        // This unwrap is safe, as the updated hashes is guaranteed to have at least one element.
        let mut root_hash = updated_hashes.last().unwrap()[0].1;
        for _ in 0..padding_depth {
            // Update the root hash, by hashing the current root hash with the empty hash.
            root_hash = self.path_hasher.hash_children(&root_hash, &self.empty_hash)?;
        }
        lap!(timer, "Hashed {} padding levels", padding_depth);

        // Update the root hash.
        self.root = root_hash;

        // Update the rest of the tree with the updated hashes.
        for (index, hash) in updated_hashes.into_iter().flatten() {
            self.tree[index] = hash;
        }

        finish!(timer);
        Ok(())
    }

    #[inline]
    /// Returns a new Merkle tree with the last 'n' leaves removed from it.
    pub fn prepare_remove_last_n(&self, n: usize) -> Result<Self> {
        let timer = timer!("MerkleTree::prepare_remove_last_n");

        ensure!(n > 0, "Cannot remove zero leaves from the Merkle tree");

        // Determine the updated number of leaves, after removing the last 'n' leaves.
        let updated_number_of_leaves = self.number_of_leaves.checked_sub(n).ok_or_else(|| {
            anyhow!("Failed to remove '{n}' leaves from the Merkle tree, as it only contains {}", self.number_of_leaves)
        })?;

        // Compute the maximum number of leaves.
        let max_leaves = match (updated_number_of_leaves).checked_next_power_of_two() {
            Some(num_leaves) => num_leaves,
            None => bail!("Integer overflow when computing the maximum number of leaves in the Merkle tree"),
        };
        // Compute the number of nodes.
        let num_nodes = max_leaves - 1;
        // Compute the tree size as the maximum number of leaves plus the number of nodes.
        let tree_size = num_nodes + max_leaves;
        // Compute the number of levels in the Merkle tree (i.e. log2(tree_size)).
        let tree_depth = tree_depth::<DEPTH>(tree_size)?;
        // Compute the number of padded levels.
        let padding_depth = DEPTH - tree_depth;

        // Initialize the Merkle tree.
        let mut tree = vec![self.empty_hash; num_nodes];
        // Extend the new Merkle tree with the existing leaf hashes, excluding the last 'n' leaves.
        tree.extend(&self.leaf_hashes()?[..updated_number_of_leaves]);
        // Resize the new Merkle tree with empty hashes to pad up to `tree_size`.
        tree.resize(tree_size, self.empty_hash);
        lap!(timer, "Resizing to {} leaves", updated_number_of_leaves);

        // Initialize a start index to track the starting index of the current level.
        let start_index = num_nodes;
        // Initialize a middle index to separate the precomputed indices from the new indices that need to be computed.
        let middle_index = num_nodes + updated_number_of_leaves;
        // Initialize a precompute index to track the starting index of each precomputed level.
        let start_precompute_index = match self.number_of_leaves.checked_next_power_of_two() {
            Some(num_leaves) => num_leaves - 1,
            None => bail!("Integer overflow when computing the Merkle tree precompute index"),
        };
        // Initialize a precompute index to track the middle index of each precomputed level.
        let middle_precompute_index = match num_nodes == start_precompute_index {
            // If the old tree and new tree are of the same size, then we can copy over the right half of the old tree.
            true => Some(start_precompute_index + self.number_of_leaves + 1),
            // true => None,
            // Otherwise, do nothing, since shrinking the tree is already free.
            false => None,
        };

        // Compute and store the hashes for each level, iterating from the penultimate level to the root level.
        self.compute_updated_tree(
            &mut tree,
            start_index,
            middle_index,
            start_precompute_index,
            middle_precompute_index,
        )?;

        // Compute the root hash, by iterating from the root level up to `DEPTH`.
        let mut root_hash = tree[0];
        for _ in 0..padding_depth {
            // Update the root hash, by hashing the current root hash with the empty hash.
            root_hash = self.path_hasher.hash_children(&root_hash, &self.empty_hash)?;
        }
        lap!(timer, "Hashed {} padding levels", padding_depth);

        finish!(timer);

        Ok(Self {
            leaf_hasher: self.leaf_hasher.clone(),
            path_hasher: self.path_hasher.clone(),
            root: root_hash,
            tree,
            empty_hash: self.empty_hash,
            number_of_leaves: updated_number_of_leaves,
        })
    }

    #[inline]
    /// Updates the Merkle tree with the last 'n' leaves removed from it.
    pub fn remove_last_n(&mut self, n: usize) -> Result<()> {
        let timer = timer!("MerkleTree::remove_last_n");

        // Compute the updated Merkle tree with the last 'n' leaves removed.
        let updated_tree = self.prepare_remove_last_n(n)?;
        // Update the tree at the very end, so the original tree is not altered in case of failure.
        *self = updated_tree;

        finish!(timer);
        Ok(())
    }

    #[inline]
    /// Returns the Merkle path for the given leaf index and leaf.
    pub fn prove(&self, leaf_index: usize, leaf: &LH::Leaf) -> Result<MerklePath<E, DEPTH>> {
        // Ensure the leaf index is valid.
        ensure!(leaf_index < self.number_of_leaves, "The given Merkle leaf index is out of bounds");

        // Compute the leaf hash.
        let leaf_hash = self.leaf_hasher.hash_leaf(leaf)?;

        // Compute the start index (on the left) for the leaf hashes level in the Merkle tree.
        let start = match self.number_of_leaves.checked_next_power_of_two() {
            Some(num_leaves) => num_leaves - 1,
            None => bail!("Integer overflow when computing the Merkle tree start index"),
        };

        // Compute the absolute index of the leaf in the Merkle tree.
        let mut index = start + leaf_index;
        // Ensure the leaf index is valid.
        ensure!(index < self.tree.len(), "The given Merkle leaf index is out of bounds");
        // Ensure the leaf hash matches the one in the tree.
        ensure!(self.tree[index] == leaf_hash, "The given Merkle leaf does not match the one in the Merkle tree");

        // Initialize a vector for the Merkle path.
        let mut path = Vec::with_capacity(DEPTH as usize);

        // Iterate from the leaf hash to the root level, storing the sibling hashes along the path.
        for _ in 0..DEPTH {
            // Compute the index of the sibling hash, if it exists.
            if let Some(sibling) = sibling(index) {
                // Append the sibling hash to the path.
                path.push(self.tree[sibling]);
                // Compute the index of the parent hash, if it exists.
                match parent(index) {
                    // Update the index to the parent index.
                    Some(parent) => index = parent,
                    // If the parent does not exist, the path is complete.
                    None => break,
                }
            }
        }

        // If the Merkle path length is not equal to `DEPTH`, pad the path with the empty hash.
        path.resize(DEPTH as usize, self.empty_hash);

        // Return the Merkle path.
        MerklePath::try_from((U64::new(leaf_index as u64), path))
    }

    /// Returns `true` if the given Merkle path is valid for the given root and leaf.
    pub fn verify(&self, path: &MerklePath<E, DEPTH>, root: &PH::Hash, leaf: &LH::Leaf) -> bool {
        path.verify(&self.leaf_hasher, &self.path_hasher, root, leaf)
    }

    /// Returns the Merkle root of the tree.
    pub const fn root(&self) -> &PH::Hash {
        &self.root
    }

    /// Returns the Merkle tree (excluding the hashes of the leaves).
    pub fn tree(&self) -> &[PH::Hash] {
        &self.tree
    }

    /// Returns the empty hash.
    pub const fn empty_hash(&self) -> &PH::Hash {
        &self.empty_hash
    }

    /// Returns the leaf hashes from the Merkle tree.
    pub fn leaf_hashes(&self) -> Result<&[LH::Hash]> {
        // Compute the start index (on the left) for the leaf hashes level in the Merkle tree.
        let start = match self.number_of_leaves.checked_next_power_of_two() {
            Some(num_leaves) => num_leaves - 1,
            None => bail!("Integer overflow when computing the Merkle tree start index"),
        };
        // Compute the end index (on the right) for the leaf hashes level in the Merkle tree.
        let end = start + self.number_of_leaves;
        // Return the leaf hashes.
        Ok(&self.tree[start..end])
    }

    /// Returns the number of leaves in the Merkle tree.
    pub const fn number_of_leaves(&self) -> usize {
        self.number_of_leaves
    }

    /// Compute and store the hashes for each level, iterating from the penultimate level to the root level.
    ///
    /// ```ignore
    ///  start_index      middle_index                              end_index
    ///  start_precompute_index         middle_precompute_index     end_index
    /// ```
    #[inline]
    fn compute_updated_tree(
        &self,
        tree: &mut [Field<E>],
        mut start_index: usize,
        mut middle_index: usize,
        mut start_precompute_index: usize,
        mut middle_precompute_index: Option<usize>,
    ) -> Result<()> {
        // Initialize a timer for the while loop.
        let timer = timer!("MerkleTree::compute_updated_tree");

        // Compute and store the hashes for each level, iterating from the penultimate level to the root level.
        while let (Some(start), Some(middle)) = (parent(start_index), parent(middle_index)) {
            // Compute the end index of the current level.
            let end = left_child(start);

            // If the current level has precomputed indices, copy them instead of recomputing them.
            if let Some(start_precompute) = parent(start_precompute_index) {
                // Compute the end index of the precomputed level.
                let end_precompute = start_precompute + (middle - start);
                // Copy the hashes for each node in the current level.
                tree[start..middle].copy_from_slice(&self.tree[start_precompute..end_precompute]);
                // Update the precompute index for the next level.
                start_precompute_index = start_precompute;
            } else {
                // Ensure the start index is equal to the middle index, as all precomputed indices have been processed.
                ensure!(start == middle, "Failed to process all left precomputed indices in the Merkle tree");
            }
            lap!(timer, "Precompute (Left): {start} -> {middle}");

            // If the current level has precomputed indices, copy them instead of recomputing them.
            // Note: This logic works because the old tree and new tree are the same power of two.
            if let Some(middle_precompute) = middle_precompute_index {
                if let Some(middle_precompute) = parent(middle_precompute) {
                    // Construct the children for the new indices in the current level.
                    let tuples = (middle..middle_precompute)
                        .map(|i| (tree[left_child(i)], tree[right_child(i)]))
                        .collect::<Vec<_>>();
                    // Process the indices that need to be computed for the current level.
                    // If any level requires computing more than 100 nodes, borrow the tree for performance.
                    match tuples.len() >= 100 {
                        // Option 1: Borrow the tree to compute and store the hashes for the new indices in the current level.
                        true => cfg_iter_mut!(tree[middle..middle_precompute]).zip_eq(cfg_iter!(tuples)).try_for_each(
                            |(node, (left, right))| {
                                *node = self.path_hasher.hash_children(left, right)?;
                                Ok::<_, Error>(())
                            },
                        )?,
                        // Option 2: Compute and store the hashes for the new indices in the current level.
                        false => tree[middle..middle_precompute].iter_mut().zip_eq(&tuples).try_for_each(
                            |(node, (left, right))| {
                                *node = self.path_hasher.hash_children(left, right)?;
                                Ok::<_, Error>(())
                            },
                        )?,
                    }
                    lap!(timer, "Compute: {middle} -> {middle_precompute}");

                    // Copy the hashes for each node in the current level.
                    tree[middle_precompute..end].copy_from_slice(&self.tree[middle_precompute..end]);
                    // Update the precompute index for the next level.
                    middle_precompute_index = Some(middle_precompute + 1);
                    lap!(timer, "Precompute (Right): {middle_precompute} -> {end}");
                } else {
                    // Ensure the middle precompute index is equal to the end index, as all precomputed indices have been processed.
                    ensure!(
                        middle_precompute == end,
                        "Failed to process all right precomputed indices in the Merkle tree"
                    );
                }
            } else {
                // Construct the children for the new indices in the current level.
                let tuples = (middle..end).map(|i| (tree[left_child(i)], tree[right_child(i)])).collect::<Vec<_>>();
                // Process the indices that need to be computed for the current level.
                // If any level requires computing more than 100 nodes, borrow the tree for performance.
                match tuples.len() >= 100 {
                    // Option 1: Borrow the tree to compute and store the hashes for the new indices in the current level.
                    true => cfg_iter_mut!(tree[middle..end]).zip_eq(cfg_iter!(tuples)).try_for_each(
                        |(node, (left, right))| {
                            *node = self.path_hasher.hash_children(left, right)?;
                            Ok::<_, Error>(())
                        },
                    )?,
                    // Option 2: Compute and store the hashes for the new indices in the current level.
                    false => tree[middle..end].iter_mut().zip_eq(&tuples).try_for_each(|(node, (left, right))| {
                        *node = self.path_hasher.hash_children(left, right)?;
                        Ok::<_, Error>(())
                    })?,
                }
                lap!(timer, "Compute: {middle} -> {end}");
            }

            // Update the start index for the next level.
            start_index = start;
            // Update the middle index for the next level.
            middle_index = middle;
        }

        // End the timer for the while loop.
        finish!(timer);

        Ok(())
    }
}

/// Returns the depth of the tree, given the size of the tree.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn tree_depth<const DEPTH: u8>(tree_size: usize) -> Result<u8> {
    let tree_size = u64::try_from(tree_size)?;
    // Ensure the tree size is less than 2^52 (for casting to an f64).
    let tree_depth = match tree_size < 4503599627370496_u64 {
        // Compute the log2 of the tree size.
        true => (tree_size as f64).log2(),
        false => bail!("Tree size must be less than 2^52"),
    };
    // Ensure the tree depth is within a u8 range.
    match tree_depth <= u8::MAX as f64 {
        true => {
            // Convert the tree depth to a u8.
            let tree_depth = tree_depth as u8;
            // Ensure the tree depth is within the depth bound.
            match tree_depth <= DEPTH {
                // Return the tree depth.
                true => Ok(tree_depth),
                false => bail!("Merkle tree cannot exceed depth {DEPTH}: attempted to reach depth {tree_depth}"),
            }
        }
        false => bail!("Merkle tree depth ({tree_depth}) exceeds maximum size ({})", u8::MAX),
    }
}

/// Returns the index of the left child, given an index.
#[inline]
const fn left_child(index: usize) -> usize {
    2 * index + 1
}

/// Returns the index of the right child, given an index.
#[inline]
const fn right_child(index: usize) -> usize {
    2 * index + 2
}

/// Returns the index of the sibling, given an index.
#[inline]
const fn sibling(index: usize) -> Option<usize> {
    if is_root(index) {
        None
    } else if is_left_child(index) {
        Some(index + 1)
    } else {
        Some(index - 1)
    }
}

/// Returns true iff the index represents the root.
#[inline]
const fn is_root(index: usize) -> bool {
    index == 0
}

/// Returns true iff the given index represents a left child.
#[inline]
const fn is_left_child(index: usize) -> bool {
    index % 2 == 1
}

/// Returns the index of the parent, given the index of a child.
#[inline]
const fn parent(index: usize) -> Option<usize> {
    if index > 0 { Some((index - 1) >> 1) } else { None }
}