snarkvm_console_collections/kary_merkle_tree/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod helpers;
pub use helpers::*;

mod path;
pub use path::*;

#[cfg(test)]
mod tests;

use snarkvm_console_types::prelude::*;

use aleo_std::prelude::*;
use std::ops::Range;

#[derive(Clone)]
pub struct KaryMerkleTree<LH: LeafHash<Hash = PH::Hash>, PH: PathHash, const DEPTH: u8, const ARITY: u8> {
    /// The leaf hasher for the Merkle tree.
    leaf_hasher: LH,
    /// The path hasher for the Merkle tree.
    path_hasher: PH,
    /// The computed root of the full Merkle tree.
    root: PH::Hash,
    /// The internal hashes, from root to hashed leaves, of the full Merkle tree.
    tree: Vec<PH::Hash>,
    /// The canonical empty hash.
    empty_hash: PH::Hash,
    /// The number of hashed leaves in the tree.
    number_of_leaves: usize,
}

/// Returns the next power of `n` that's greater than or equal to `base`.
/// Returns `None` for edge cases or in case of overflow.
fn checked_next_power_of_n(base: usize, n: usize) -> Option<usize> {
    if n <= 1 {
        return None;
    }

    let mut value = 1;
    while value < base {
        value = value.checked_mul(n)?;
    }
    Some(value)
}

impl<LH: LeafHash<Hash = PH::Hash>, PH: PathHash, const DEPTH: u8, const ARITY: u8>
    KaryMerkleTree<LH, PH, DEPTH, ARITY>
{
    /// Initializes a new Merkle tree with the given leaves.
    #[inline]
    pub fn new(leaf_hasher: &LH, path_hasher: &PH, leaves: &[LH::Leaf]) -> Result<Self> {
        let timer = timer!("MerkleTree::new");

        // Ensure the Merkle tree depth is greater than 0.
        ensure!(DEPTH > 0, "Merkle tree depth must be greater than 0");
        // Ensure the Merkle tree depth is less than or equal to 64.
        ensure!(DEPTH <= 64u8, "Merkle tree depth must be less than or equal to 64");
        // Ensure the Merkle tree arity is greater than 1.
        ensure!(ARITY > 1, "Merkle tree arity must be greater than 1");
        // Ensure the Merkle tree does not overflow a u128.
        ensure!((ARITY as u128).checked_pow(DEPTH as u32).is_some(), "Merkle tree size overflowed");

        // Compute the maximum number of leaves.
        let Some(max_leaves) = checked_next_power_of_n(leaves.len(), ARITY as usize) else {
            bail!("Integer overflow when computing the maximum number of leaves in the Merkle tree");
        };

        // Compute the number of nodes.
        let num_nodes = (max_leaves - 1) / (ARITY as usize - 1);
        // Compute the tree size as the maximum number of leaves plus the number of nodes.
        let tree_size = max_leaves + num_nodes;
        // Compute the number of levels in the Merkle tree (i.e. log_arity(tree_size)).
        let tree_depth = tree_depth::<DEPTH, ARITY>(tree_size)?;
        // Compute the number of padded levels.
        let padding_depth = DEPTH - tree_depth;

        // Compute the empty hash.
        let empty_hash = path_hasher.hash_empty::<ARITY>()?;

        // Calculate the size of the tree which excludes leafless nodes.
        // The minimum tree size is either a single root node or the calculated number of nodes plus
        // the supplied leaves, and empty hashes that pad up to the tree's arity (making every node full).
        let arity = ARITY as usize;
        let all_nodes_are_full = leaves.len() % arity == 0;
        let minimum_tree_size = std::cmp::max(
            1,
            num_nodes + leaves.len() + if all_nodes_are_full { 0 } else { arity - leaves.len() % arity },
        );

        // Initialize the Merkle tree.
        let mut tree = vec![empty_hash; minimum_tree_size];

        // Compute and store each leaf hash.
        tree[num_nodes..num_nodes + leaves.len()].clone_from_slice(&leaf_hasher.hash_leaves(leaves)?);
        lap!(timer, "Hashed {} leaves", leaves.len());

        // Compute and store the hashes for each level, iterating from the penultimate level to the root level.
        let mut start_index = num_nodes;
        // Compute the start index of the current level.
        while let Some(start) = parent::<ARITY>(start_index) {
            // Compute the end index of the current level.
            let end = child_indexes::<ARITY>(start).next().ok_or_else(|| anyhow!("Missing left-most child"))?;

            // Construct the children for each node in the current level.
            let child_nodes = (start..end)
                .take_while(|&i| child_indexes::<ARITY>(i).next().and_then(|idx| tree.get(idx)).is_some())
                .map(|i| &tree[child_indexes::<ARITY>(i)])
                .collect::<Vec<_>>();

            // Compute and store the hashes for each node in the current level.
            let num_full_nodes = child_nodes.len();
            let hashes = path_hasher.hash_all_children(&child_nodes)?;
            tree[start..][..num_full_nodes].clone_from_slice(&hashes);
            // Use the precomputed empty node hash for every empty node, if there are any.
            if start + num_full_nodes < end {
                let empty_node_hash = path_hasher.hash_children(&vec![empty_hash; arity])?;
                for node in tree.iter_mut().take(end).skip(start + num_full_nodes) {
                    *node = empty_node_hash;
                }
            }
            // Update the start index for the next level.
            start_index = start;
        }
        lap!(timer, "Hashed {} levels", tree_depth);

        // Compute the root hash, by iterating from the root level up to `DEPTH`.
        let mut root_hash = tree[0];
        for _ in 0..padding_depth {
            // Update the root hash, by hashing the current root hash with the empty hashes.

            let mut input = Vec::with_capacity(ARITY as usize);
            input.push(root_hash);
            // Resize the vector to ARITY length, filling with empty_hash if necessary.
            input.resize(ARITY as usize, empty_hash);

            root_hash = path_hasher.hash_children(&input)?;
        }
        lap!(timer, "Hashed {} padding levels", padding_depth);

        finish!(timer);

        Ok(Self {
            leaf_hasher: leaf_hasher.clone(),
            path_hasher: path_hasher.clone(),
            root: root_hash,
            tree,
            empty_hash,
            number_of_leaves: leaves.len(),
        })
    }

    #[inline]
    /// Returns the Merkle path for the given leaf index and leaf.
    pub fn prove(&self, leaf_index: usize, leaf: &LH::Leaf) -> Result<KaryMerklePath<PH, DEPTH, ARITY>> {
        // Ensure the leaf index is valid.
        ensure!(leaf_index < self.number_of_leaves, "The given Merkle leaf index is out of bounds");

        // Compute the leaf hash.
        let leaf_hash = self.leaf_hasher.hash_leaf(leaf)?;

        // Compute the start index (on the left) for the leaf hashes level in the Merkle tree.
        let start = match checked_next_power_of_n(self.number_of_leaves, ARITY as usize) {
            Some(num_leaves) => (num_leaves - 1) / (ARITY as usize - 1),
            None => bail!("Integer overflow when computing the Merkle tree start index"),
        };

        // Compute the absolute index of the leaf in the Merkle tree.
        let mut index = start + leaf_index;
        // Ensure the leaf index is valid.
        ensure!(index < self.tree.len(), "The given Merkle leaf index is out of bounds");
        // Ensure the leaf hash matches the one in the tree.
        ensure!(self.tree[index] == leaf_hash, "The given Merkle leaf does not match the one in the Merkle tree");

        // Initialize a vector for the Merkle path.
        let mut path = Vec::with_capacity(DEPTH as usize);

        // Iterate from the leaf hash to the root level, storing the sibling hashes along the path.
        for _ in 0..DEPTH {
            // Compute the index of the sibling hash, if it exists.
            if let Some(siblings) = siblings::<ARITY>(index) {
                // Append the sibling hashes to the path.
                let sibling_hashes = siblings.map(|index| self.tree[index]).collect::<Vec<_>>();

                path.push(sibling_hashes);
                // Compute the index of the parent hash, if it exists.
                match parent::<ARITY>(index) {
                    // Update the index to the parent index.
                    Some(parent) => index = parent,
                    // If the parent does not exist, the path is complete.
                    None => break,
                }
            }
        }

        // If the Merkle path length is not equal to `DEPTH`, pad the path with the empty hash.
        if path.len() != DEPTH as usize {
            let empty_hashes = (0..ARITY.saturating_sub(1)).map(|_| self.empty_hash).collect::<Vec<_>>();
            path.resize(DEPTH as usize, empty_hashes);
        }

        // Return the Merkle path.
        KaryMerklePath::try_from((leaf_index as u64, path))
    }

    /// Returns `true` if the given Merkle path is valid for the given root and leaf.
    pub fn verify(&self, path: &KaryMerklePath<PH, DEPTH, ARITY>, root: &PH::Hash, leaf: &LH::Leaf) -> bool {
        path.verify(&self.leaf_hasher, &self.path_hasher, root, leaf)
    }

    /// Returns the Merkle root of the tree.
    pub const fn root(&self) -> &PH::Hash {
        &self.root
    }

    /// Returns the Merkle tree (excluding the hashes of the leaves).
    pub fn tree(&self) -> &[PH::Hash] {
        &self.tree
    }

    /// Returns the empty hash.
    pub const fn empty_hash(&self) -> &PH::Hash {
        &self.empty_hash
    }

    /// Returns the number of leaves in the Merkle tree.
    pub const fn number_of_leaves(&self) -> usize {
        self.number_of_leaves
    }
}

/// Returns the depth of the tree, given the size of the tree.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn tree_depth<const DEPTH: u8, const ARITY: u8>(tree_size: usize) -> Result<u8> {
    let tree_size = u64::try_from(tree_size)?;

    ensure!(tree_size < 4503599627370496_u64, "Tree size must be less than 2^52");

    // Calculate the tree depth based on the tree size and arity.
    // log_arity(tree_size) =  ln(tree_size) / ln(arity).
    let tree_depth_float = (tree_size as f64).ln() / (ARITY as f64).ln();
    let tree_depth = u8::try_from(tree_depth_float.floor() as u64)?;

    // Ensure the tree depth is within the depth bound.
    match tree_depth <= DEPTH {
        // Return the tree depth.
        true => Ok(tree_depth),
        false => bail!("Merkle tree cannot exceed depth {DEPTH}: attempted to reach depth {tree_depth}"),
    }
}

/// Returns the indexes of the children, given an index.
fn child_indexes<const ARITY: u8>(index: usize) -> Range<usize> {
    let start = index * ARITY as usize + 1;
    start..start + ARITY as usize
}

/// Returns the index of the siblings, given an index.
#[inline]
fn siblings<const ARITY: u8>(index: usize) -> Option<impl Iterator<Item = usize>> {
    if is_root(index) {
        None
    } else {
        // Find the left-most sibling.
        let left_most_sibling = ((index - 1) / ARITY as usize) * ARITY as usize + 1;

        // Add all the siblings except for the given index.
        Some((left_most_sibling..left_most_sibling + ARITY as usize).filter(move |&i| index != i))
    }
}

/// Returns true iff the index represents the root.
#[inline]
const fn is_root(index: usize) -> bool {
    index == 0
}

/// Returns the index of the parent, given the index of a child.
#[inline]
const fn parent<const ARITY: u8>(index: usize) -> Option<usize> {
    if index > 0 { Some((index - 1) / ARITY as usize) } else { None }
}