snarkvm_console_collections/kary_merkle_tree/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod helpers;
pub use helpers::*;
mod path;
pub use path::*;
#[cfg(test)]
mod tests;
use snarkvm_console_types::prelude::*;
use aleo_std::prelude::*;
use std::ops::Range;
#[derive(Clone)]
pub struct KaryMerkleTree<LH: LeafHash<Hash = PH::Hash>, PH: PathHash, const DEPTH: u8, const ARITY: u8> {
/// The leaf hasher for the Merkle tree.
leaf_hasher: LH,
/// The path hasher for the Merkle tree.
path_hasher: PH,
/// The computed root of the full Merkle tree.
root: PH::Hash,
/// The internal hashes, from root to hashed leaves, of the full Merkle tree.
tree: Vec<PH::Hash>,
/// The canonical empty hash.
empty_hash: PH::Hash,
/// The number of hashed leaves in the tree.
number_of_leaves: usize,
}
/// Returns the next power of `n` that's greater than or equal to `base`.
/// Returns `None` for edge cases or in case of overflow.
fn checked_next_power_of_n(base: usize, n: usize) -> Option<usize> {
if n <= 1 {
return None;
}
let mut value = 1;
while value < base {
value = value.checked_mul(n)?;
}
Some(value)
}
impl<LH: LeafHash<Hash = PH::Hash>, PH: PathHash, const DEPTH: u8, const ARITY: u8>
KaryMerkleTree<LH, PH, DEPTH, ARITY>
{
/// Initializes a new Merkle tree with the given leaves.
#[inline]
pub fn new(leaf_hasher: &LH, path_hasher: &PH, leaves: &[LH::Leaf]) -> Result<Self> {
let timer = timer!("MerkleTree::new");
// Ensure the Merkle tree depth is greater than 0.
ensure!(DEPTH > 0, "Merkle tree depth must be greater than 0");
// Ensure the Merkle tree depth is less than or equal to 64.
ensure!(DEPTH <= 64u8, "Merkle tree depth must be less than or equal to 64");
// Ensure the Merkle tree arity is greater than 1.
ensure!(ARITY > 1, "Merkle tree arity must be greater than 1");
// Ensure the Merkle tree does not overflow a u128.
ensure!((ARITY as u128).checked_pow(DEPTH as u32).is_some(), "Merkle tree size overflowed");
// Compute the maximum number of leaves.
let Some(max_leaves) = checked_next_power_of_n(leaves.len(), ARITY as usize) else {
bail!("Integer overflow when computing the maximum number of leaves in the Merkle tree");
};
// Compute the number of nodes.
let num_nodes = (max_leaves - 1) / (ARITY as usize - 1);
// Compute the tree size as the maximum number of leaves plus the number of nodes.
let tree_size = max_leaves + num_nodes;
// Compute the number of levels in the Merkle tree (i.e. log_arity(tree_size)).
let tree_depth = tree_depth::<DEPTH, ARITY>(tree_size)?;
// Compute the number of padded levels.
let padding_depth = DEPTH - tree_depth;
// Compute the empty hash.
let empty_hash = path_hasher.hash_empty::<ARITY>()?;
// Calculate the size of the tree which excludes leafless nodes.
// The minimum tree size is either a single root node or the calculated number of nodes plus
// the supplied leaves, and empty hashes that pad up to the tree's arity (making every node full).
let arity = ARITY as usize;
let all_nodes_are_full = leaves.len() % arity == 0;
let minimum_tree_size = std::cmp::max(
1,
num_nodes + leaves.len() + if all_nodes_are_full { 0 } else { arity - leaves.len() % arity },
);
// Initialize the Merkle tree.
let mut tree = vec![empty_hash; minimum_tree_size];
// Compute and store each leaf hash.
tree[num_nodes..num_nodes + leaves.len()].clone_from_slice(&leaf_hasher.hash_leaves(leaves)?);
lap!(timer, "Hashed {} leaves", leaves.len());
// Compute and store the hashes for each level, iterating from the penultimate level to the root level.
let mut start_index = num_nodes;
// Compute the start index of the current level.
while let Some(start) = parent::<ARITY>(start_index) {
// Compute the end index of the current level.
let end = child_indexes::<ARITY>(start).next().ok_or_else(|| anyhow!("Missing left-most child"))?;
// Construct the children for each node in the current level.
let child_nodes = (start..end)
.take_while(|&i| child_indexes::<ARITY>(i).next().and_then(|idx| tree.get(idx)).is_some())
.map(|i| &tree[child_indexes::<ARITY>(i)])
.collect::<Vec<_>>();
// Compute and store the hashes for each node in the current level.
let num_full_nodes = child_nodes.len();
let hashes = path_hasher.hash_all_children(&child_nodes)?;
tree[start..][..num_full_nodes].clone_from_slice(&hashes);
// Use the precomputed empty node hash for every empty node, if there are any.
if start + num_full_nodes < end {
let empty_node_hash = path_hasher.hash_children(&vec![empty_hash; arity])?;
for node in tree.iter_mut().take(end).skip(start + num_full_nodes) {
*node = empty_node_hash;
}
}
// Update the start index for the next level.
start_index = start;
}
lap!(timer, "Hashed {} levels", tree_depth);
// Compute the root hash, by iterating from the root level up to `DEPTH`.
let mut root_hash = tree[0];
for _ in 0..padding_depth {
// Update the root hash, by hashing the current root hash with the empty hashes.
let mut input = Vec::with_capacity(ARITY as usize);
input.push(root_hash);
// Resize the vector to ARITY length, filling with empty_hash if necessary.
input.resize(ARITY as usize, empty_hash);
root_hash = path_hasher.hash_children(&input)?;
}
lap!(timer, "Hashed {} padding levels", padding_depth);
finish!(timer);
Ok(Self {
leaf_hasher: leaf_hasher.clone(),
path_hasher: path_hasher.clone(),
root: root_hash,
tree,
empty_hash,
number_of_leaves: leaves.len(),
})
}
#[inline]
/// Returns the Merkle path for the given leaf index and leaf.
pub fn prove(&self, leaf_index: usize, leaf: &LH::Leaf) -> Result<KaryMerklePath<PH, DEPTH, ARITY>> {
// Ensure the leaf index is valid.
ensure!(leaf_index < self.number_of_leaves, "The given Merkle leaf index is out of bounds");
// Compute the leaf hash.
let leaf_hash = self.leaf_hasher.hash_leaf(leaf)?;
// Compute the start index (on the left) for the leaf hashes level in the Merkle tree.
let start = match checked_next_power_of_n(self.number_of_leaves, ARITY as usize) {
Some(num_leaves) => (num_leaves - 1) / (ARITY as usize - 1),
None => bail!("Integer overflow when computing the Merkle tree start index"),
};
// Compute the absolute index of the leaf in the Merkle tree.
let mut index = start + leaf_index;
// Ensure the leaf index is valid.
ensure!(index < self.tree.len(), "The given Merkle leaf index is out of bounds");
// Ensure the leaf hash matches the one in the tree.
ensure!(self.tree[index] == leaf_hash, "The given Merkle leaf does not match the one in the Merkle tree");
// Initialize a vector for the Merkle path.
let mut path = Vec::with_capacity(DEPTH as usize);
// Iterate from the leaf hash to the root level, storing the sibling hashes along the path.
for _ in 0..DEPTH {
// Compute the index of the sibling hash, if it exists.
if let Some(siblings) = siblings::<ARITY>(index) {
// Append the sibling hashes to the path.
let sibling_hashes = siblings.map(|index| self.tree[index]).collect::<Vec<_>>();
path.push(sibling_hashes);
// Compute the index of the parent hash, if it exists.
match parent::<ARITY>(index) {
// Update the index to the parent index.
Some(parent) => index = parent,
// If the parent does not exist, the path is complete.
None => break,
}
}
}
// If the Merkle path length is not equal to `DEPTH`, pad the path with the empty hash.
if path.len() != DEPTH as usize {
let empty_hashes = (0..ARITY.saturating_sub(1)).map(|_| self.empty_hash).collect::<Vec<_>>();
path.resize(DEPTH as usize, empty_hashes);
}
// Return the Merkle path.
KaryMerklePath::try_from((leaf_index as u64, path))
}
/// Returns `true` if the given Merkle path is valid for the given root and leaf.
pub fn verify(&self, path: &KaryMerklePath<PH, DEPTH, ARITY>, root: &PH::Hash, leaf: &LH::Leaf) -> bool {
path.verify(&self.leaf_hasher, &self.path_hasher, root, leaf)
}
/// Returns the Merkle root of the tree.
pub const fn root(&self) -> &PH::Hash {
&self.root
}
/// Returns the Merkle tree (excluding the hashes of the leaves).
pub fn tree(&self) -> &[PH::Hash] {
&self.tree
}
/// Returns the empty hash.
pub const fn empty_hash(&self) -> &PH::Hash {
&self.empty_hash
}
/// Returns the number of leaves in the Merkle tree.
pub const fn number_of_leaves(&self) -> usize {
self.number_of_leaves
}
}
/// Returns the depth of the tree, given the size of the tree.
#[inline]
#[allow(clippy::cast_possible_truncation)]
fn tree_depth<const DEPTH: u8, const ARITY: u8>(tree_size: usize) -> Result<u8> {
let tree_size = u64::try_from(tree_size)?;
ensure!(tree_size < 4503599627370496_u64, "Tree size must be less than 2^52");
// Calculate the tree depth based on the tree size and arity.
// log_arity(tree_size) = ln(tree_size) / ln(arity).
let tree_depth_float = (tree_size as f64).ln() / (ARITY as f64).ln();
let tree_depth = u8::try_from(tree_depth_float.floor() as u64)?;
// Ensure the tree depth is within the depth bound.
match tree_depth <= DEPTH {
// Return the tree depth.
true => Ok(tree_depth),
false => bail!("Merkle tree cannot exceed depth {DEPTH}: attempted to reach depth {tree_depth}"),
}
}
/// Returns the indexes of the children, given an index.
fn child_indexes<const ARITY: u8>(index: usize) -> Range<usize> {
let start = index * ARITY as usize + 1;
start..start + ARITY as usize
}
/// Returns the index of the siblings, given an index.
#[inline]
fn siblings<const ARITY: u8>(index: usize) -> Option<impl Iterator<Item = usize>> {
if is_root(index) {
None
} else {
// Find the left-most sibling.
let left_most_sibling = ((index - 1) / ARITY as usize) * ARITY as usize + 1;
// Add all the siblings except for the given index.
Some((left_most_sibling..left_most_sibling + ARITY as usize).filter(move |&i| index != i))
}
}
/// Returns true iff the index represents the root.
#[inline]
const fn is_root(index: usize) -> bool {
index == 0
}
/// Returns the index of the parent, given the index of a child.
#[inline]
const fn parent<const ARITY: u8>(index: usize) -> Option<usize> {
if index > 0 { Some((index - 1) / ARITY as usize) } else { None }
}