1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod configuration;
pub use configuration::*;

mod header_leaf;
pub use header_leaf::*;

mod transaction_leaf;
pub use transaction_leaf::*;

pub mod transition_leaf;
pub use transition_leaf::*;

mod bytes;
mod parse;
mod serialize;
mod verify;

use snarkvm_console_network::prelude::*;
use snarkvm_console_types::Field;

/// The state path proves existence of the transition leaf to either a global or local state root.
#[derive(Clone, PartialEq, Eq)]
pub struct StatePath<N: Network> {
    /// The global state root (Public).
    global_state_root: N::StateRoot,
    /// The Merkle path for the block hash.
    block_path: BlockPath<N>,
    /// The block hash.
    block_hash: N::BlockHash,
    /// The previous block hash.
    previous_block_hash: N::BlockHash,
    /// The block header root.
    header_root: Field<N>,
    /// The Merkle path for the block header leaf.
    header_path: HeaderPath<N>,
    /// The block header leaf.
    header_leaf: HeaderLeaf<N>,
    /// The Merkle path for the transaction ID.
    transactions_path: TransactionsPath<N>,
    /// The transaction ID.
    transaction_id: N::TransactionID,
    /// The Merkle path for the transaction leaf.
    transaction_path: TransactionPath<N>,
    /// The transaction leaf.
    transaction_leaf: TransactionLeaf<N>,
    /// The Merkle path for the transition leaf.
    transition_path: TransitionPath<N>,
    /// The transition leaf.
    transition_leaf: TransitionLeaf<N>,
}

impl<N: Network> StatePath<N> {
    /// Initializes a new instance of `StatePath`.
    pub fn new_local(
        global_state_root: N::StateRoot,
        local_state_root: N::TransactionID,
        transaction_path: TransactionPath<N>,
        transaction_leaf: TransactionLeaf<N>,
        transition_path: TransitionPath<N>,
        transition_leaf: TransitionLeaf<N>,
    ) -> Result<Self> {
        // Compute an arbitrary transactions path.
        let transactions_tree: TransactionsTree<N> = N::merkle_tree_bhp(&[local_state_root.to_bits_le()])?;
        let transactions_path = transactions_tree.prove(0, &local_state_root.to_bits_le())?;
        let transactions_root = transactions_tree.root();

        // Compute an arbitrary block header path.
        let header_leaf = HeaderLeaf::<N>::new(0, *transactions_root);
        let header_tree: HeaderTree<N> = N::merkle_tree_bhp(&[header_leaf.to_bits_le()])?;
        let header_path = header_tree.prove(0, &header_leaf.to_bits_le())?;
        let header_root = *header_tree.root();

        // Compute an arbitrary block path.
        let previous_block_hash: N::BlockHash = Field::<N>::zero().into();
        let block_hash: N::BlockHash = previous_block_hash;
        let block_tree: BlockTree<N> = N::merkle_tree_bhp(&[block_hash.to_bits_le()])?;
        let block_path = block_tree.prove(0, &block_hash.to_bits_le())?;

        // Return the state path.
        Ok(Self {
            global_state_root,
            block_path,
            block_hash,
            previous_block_hash,
            header_root,
            header_path,
            header_leaf,
            transactions_path,
            transaction_id: local_state_root,
            transaction_path,
            transaction_leaf,
            transition_path,
            transition_leaf,
        })
    }

    /// Initializes a new instance of `StatePath`.
    #[allow(clippy::too_many_arguments)]
    pub fn from(
        global_state_root: N::StateRoot,
        block_path: BlockPath<N>,
        block_hash: N::BlockHash,
        previous_block_hash: N::BlockHash,
        header_root: Field<N>,
        header_path: HeaderPath<N>,
        header_leaf: HeaderLeaf<N>,
        transactions_path: TransactionsPath<N>,
        transaction_id: N::TransactionID,
        transaction_path: TransactionPath<N>,
        transaction_leaf: TransactionLeaf<N>,
        transition_path: TransitionPath<N>,
        transition_leaf: TransitionLeaf<N>,
    ) -> Self {
        // Return the state path.
        Self {
            global_state_root,
            block_path,
            block_hash,
            previous_block_hash,
            header_root,
            header_path,
            header_leaf,
            transactions_path,
            transaction_id,
            transaction_path,
            transaction_leaf,
            transition_path,
            transition_leaf,
        }
    }

    /// Returns the global state root.
    pub const fn global_state_root(&self) -> N::StateRoot {
        self.global_state_root
    }

    /// Returns the block path.
    pub const fn block_path(&self) -> &BlockPath<N> {
        &self.block_path
    }

    /// Returns the block hash.
    pub const fn block_hash(&self) -> N::BlockHash {
        self.block_hash
    }

    /// Returns the previous block hash.
    pub const fn previous_block_hash(&self) -> N::BlockHash {
        self.previous_block_hash
    }

    /// Returns the block header root.
    pub const fn header_root(&self) -> &Field<N> {
        &self.header_root
    }

    /// Returns the header path.
    pub const fn header_path(&self) -> &HeaderPath<N> {
        &self.header_path
    }

    /// Returns the header leaf.
    pub const fn header_leaf(&self) -> &HeaderLeaf<N> {
        &self.header_leaf
    }

    /// Returns the transactions path.
    pub const fn transactions_path(&self) -> &TransactionsPath<N> {
        &self.transactions_path
    }

    /// Returns the transaction ID.
    pub const fn transaction_id(&self) -> &N::TransactionID {
        &self.transaction_id
    }

    /// Returns the Merkle path for the transaction leaf.
    pub const fn transaction_path(&self) -> &TransactionPath<N> {
        &self.transaction_path
    }

    /// Returns the transaction leaf.
    pub const fn transaction_leaf(&self) -> &TransactionLeaf<N> {
        &self.transaction_leaf
    }

    /// Returns the Merkle path for the transition leaf.
    pub const fn transition_path(&self) -> &TransitionPath<N> {
        &self.transition_path
    }

    /// Returns the transition leaf.
    pub const fn transition_leaf(&self) -> &TransitionLeaf<N> {
        &self.transition_leaf
    }
}

#[cfg(any(test, feature = "test"))]
pub mod test_helpers {
    use super::*;
    use snarkvm_console_network::prelude::TestRng;

    /// Randomly sample a state path to a global state root.
    /// If a `commitment` is given, it is used. Otherwise, a `commitment` is randomly sampled.
    pub fn sample_global_state_path<N: Network>(
        commitment: Option<Field<N>>,
        rng: &mut TestRng,
    ) -> Result<StatePath<N>> {
        // Prepare the commitment.
        let commitment = match commitment {
            Some(commitment) => commitment,
            None => Field::rand(rng),
        };

        // Construct the transition path and transaction leaf.
        let transition_leaf = TransitionLeaf::new_with_version(0, 3, commitment);
        let transition_tree: TransitionTree<N> = N::merkle_tree_bhp(&[transition_leaf.to_bits_le()])?;
        let transition_id = transition_tree.root();
        let transition_path = transition_tree.prove(0, &transition_leaf.to_bits_le())?;

        // Construct the transaction path and transaction leaf.
        let transaction_leaf = TransactionLeaf::new_execution(0, *transition_id);
        let transaction_tree: TransactionTree<N> = N::merkle_tree_bhp(&[transaction_leaf.to_bits_le()])?;
        let transaction_id = *transaction_tree.root();
        let transaction_path = transaction_tree.prove(0, &transaction_leaf.to_bits_le())?;

        // Construct the transactions path.
        let transactions_tree: TransactionsTree<N> = N::merkle_tree_bhp(&[transaction_id.to_bits_le()])?;
        let transactions_root = transactions_tree.root();
        let transactions_path = transactions_tree.prove(0, &transaction_id.to_bits_le())?;

        // Construct the block header path.
        let header_leaf = HeaderLeaf::<N>::new(1, *transactions_root);
        let header_tree: HeaderTree<N> =
            N::merkle_tree_bhp(&[Field::<N>::zero().to_bits_le(), header_leaf.to_bits_le()])?;
        let header_root = header_tree.root();
        let header_path = header_tree.prove(1, &header_leaf.to_bits_le())?;

        let previous_block_hash: N::BlockHash = Field::<N>::rand(rng).into();
        let preimage = (*previous_block_hash).to_bits_le().into_iter().chain(header_root.to_bits_le().into_iter());
        let block_hash = N::hash_bhp1024(&preimage.collect::<Vec<_>>())?;

        // Construct the global state root and block path.
        let block_tree: BlockTree<N> = N::merkle_tree_bhp(&[block_hash.to_bits_le()])?;
        let global_state_root = *block_tree.root();
        let block_path = block_tree.prove(0, &block_hash.to_bits_le())?;

        Ok(StatePath::<N>::from(
            global_state_root.into(),
            block_path,
            block_hash.into(),
            previous_block_hash,
            *header_root,
            header_path,
            header_leaf,
            transactions_path,
            transaction_id.into(),
            transaction_path,
            transaction_leaf,
            transition_path,
            transition_leaf,
        ))
    }

    /// Randomly sample a state path to a local state root.
    /// If a `commitment` is given, it is used. Otherwise, a `commitment` is randomly sampled.
    pub fn sample_local_state_path<N: Network>(
        commitment: Option<Field<N>>,
        rng: &mut TestRng,
    ) -> Result<StatePath<N>> {
        // Prepare the commitment.
        let commitment = match commitment {
            Some(commitment) => commitment,
            None => Field::rand(rng),
        };

        // Construct the transition path and transaction leaf.
        let transition_leaf = TransitionLeaf::new_with_version(0, 3, commitment);
        let transition_tree: TransitionTree<N> = N::merkle_tree_bhp(&[transition_leaf.to_bits_le()])?;
        let transition_id = transition_tree.root();
        let transition_path = transition_tree.prove(0, &transition_leaf.to_bits_le())?;

        // Construct the transaction path and transaction leaf.
        let transaction_leaf = TransactionLeaf::new_execution(0, *transition_id);
        let transaction_tree: TransactionTree<N> = N::merkle_tree_bhp(&[transaction_leaf.to_bits_le()])?;
        let transaction_id = *transaction_tree.root();
        let transaction_path = transaction_tree.prove(0, &transaction_leaf.to_bits_le())?;

        // Construct the transactions path.
        let transactions_tree: TransactionsTree<N> = N::merkle_tree_bhp(&[transaction_id.to_bits_le()])?;
        let transactions_root = transactions_tree.root();
        let transactions_path = transactions_tree.prove(0, &transaction_id.to_bits_le())?;

        // Prepare random header leaves.
        let random_header_index = rng.gen_range(0..7);
        let mut random_header_leaves = vec![Field::<N>::zero().to_bits_le(); (random_header_index + 1) as usize];
        let header_leaf = HeaderLeaf::<N>::new(random_header_index, *transactions_root);
        random_header_leaves[random_header_index as usize] = header_leaf.to_bits_le();

        // Construct the block header path.
        let header_tree: HeaderTree<N> = N::merkle_tree_bhp(&random_header_leaves)?;
        let header_root = header_tree.root();
        let header_path = header_tree.prove(random_header_index as usize, &header_leaf.to_bits_le())?;

        let previous_block_hash: N::BlockHash = Field::<N>::rand(rng).into();
        let block_hash: N::BlockHash = Field::<N>::rand(rng).into();

        // Construct the global state root and block path.
        let block_tree: BlockTree<N> = N::merkle_tree_bhp(&[block_hash.to_bits_le()])?;
        let global_state_root = *block_tree.root();
        let block_path = block_tree.prove(0, &block_hash.to_bits_le())?;

        Ok(StatePath::<N>::from(
            global_state_root.into(),
            block_path,
            block_hash,
            previous_block_hash,
            *header_root,
            header_path,
            header_leaf,
            transactions_path,
            transaction_id.into(),
            transaction_path,
            transaction_leaf,
            transition_path,
            transition_leaf,
        ))
    }
}