1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<N: Network> Request<N> {
/// Returns the request for a given private key, program ID, function name, inputs, input types, and RNG, where:
/// challenge := HashToScalar(r * G, pk_sig, pr_sig, signer, \[tvk, tcm, function ID, input IDs\])
/// response := r - challenge * sk_sig
pub fn sign<R: Rng + CryptoRng>(
private_key: &PrivateKey<N>,
program_id: ProgramID<N>,
function_name: Identifier<N>,
inputs: impl ExactSizeIterator<Item = impl TryInto<Value<N>>>,
input_types: &[ValueType<N>],
rng: &mut R,
) -> Result<Self> {
// Ensure the number of inputs matches the number of input types.
if input_types.len() != inputs.len() {
bail!(
"'{program_id}/{function_name}' expects {} inputs, but {} were provided.",
input_types.len(),
inputs.len()
)
}
// Retrieve `sk_sig`.
let sk_sig = private_key.sk_sig();
// Derive the compute key.
let compute_key = ComputeKey::try_from(private_key)?;
// Retrieve `pk_sig`.
let pk_sig = compute_key.pk_sig();
// Retrieve `pr_sig`.
let pr_sig = compute_key.pr_sig();
// Derive the view key.
let view_key = ViewKey::try_from((private_key, &compute_key))?;
// Derive `sk_tag` from the graph key.
let sk_tag = GraphKey::try_from(view_key)?.sk_tag();
// Sample a random nonce.
let nonce = Field::<N>::rand(rng);
// Compute a `r` as `HashToScalar(sk_sig || nonce)`. Note: This is the transition secret key `tsk`.
let r = N::hash_to_scalar_psd4(&[N::serial_number_domain(), sk_sig.to_field()?, nonce])?;
// Compute `g_r` as `r * G`. Note: This is the transition public key `tpk`.
let g_r = N::g_scalar_multiply(&r);
// Derive the signer from the compute key.
let signer = Address::try_from(compute_key)?;
// Compute the transition view key `tvk` as `r * signer`.
let tvk = (*signer * r).to_x_coordinate();
// Compute the transition commitment `tcm` as `Hash(tvk)`.
let tcm = N::hash_psd2(&[tvk])?;
// Compute the function ID as `Hash(network_id, program_id, function_name)`.
let function_id = N::hash_bhp1024(
&(U16::<N>::new(N::ID), program_id.name(), program_id.network(), function_name).to_bits_le(),
)?;
// Construct the hash input as `(r * G, pk_sig, pr_sig, signer, [tvk, tcm, function ID, input IDs])`.
let mut message = Vec::with_capacity(9 + 2 * inputs.len());
message.extend([g_r, pk_sig, pr_sig, *signer].map(|point| point.to_x_coordinate()));
message.extend([tvk, tcm, function_id]);
// Initialize a vector to store the prepared inputs.
let mut prepared_inputs = Vec::with_capacity(inputs.len());
// Initialize a vector to store the input IDs.
let mut input_ids = Vec::with_capacity(inputs.len());
// Prepare the inputs.
for (index, (input, input_type)) in inputs.zip_eq(input_types).enumerate() {
// Prepare the input.
let input = input.try_into().map_err(|_| {
anyhow!("Failed to parse input #{index} ('{input_type}') for '{program_id}/{function_name}'")
})?;
// Store the prepared input.
prepared_inputs.push(input.clone());
match input_type {
// A constant input is hashed (using `tcm`) to a field element.
ValueType::Constant(..) => {
// Ensure the input is a plaintext.
ensure!(matches!(input, Value::Plaintext(..)), "Expected a plaintext input");
// Construct the (console) input index as a field element.
let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
// Construct the preimage as `(function ID || input || tcm || index)`.
let mut preimage = Vec::new();
preimage.push(function_id);
preimage.extend(input.to_fields()?);
preimage.push(tcm);
preimage.push(index);
// Hash the input to a field element.
let input_hash = N::hash_psd8(&preimage)?;
// Add the input hash to the preimage.
message.push(input_hash);
// Add the input ID to the inputs.
input_ids.push(InputID::Constant(input_hash));
}
// A public input is hashed (using `tcm`) to a field element.
ValueType::Public(..) => {
// Ensure the input is a plaintext.
ensure!(matches!(input, Value::Plaintext(..)), "Expected a plaintext input");
// Construct the (console) input index as a field element.
let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
// Construct the preimage as `(function ID || input || tcm || index)`.
let mut preimage = Vec::new();
preimage.push(function_id);
preimage.extend(input.to_fields()?);
preimage.push(tcm);
preimage.push(index);
// Hash the input to a field element.
let input_hash = N::hash_psd8(&preimage)?;
// Add the input hash to the preimage.
message.push(input_hash);
// Add the input ID to the inputs.
input_ids.push(InputID::Public(input_hash));
}
// A private input is encrypted (using `tvk`) and hashed to a field element.
ValueType::Private(..) => {
// Ensure the input is a plaintext.
ensure!(matches!(input, Value::Plaintext(..)), "Expected a plaintext input");
// Construct the (console) input index as a field element.
let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
// Compute the input view key as `Hash(function ID || tvk || index)`.
let input_view_key = N::hash_psd4(&[function_id, tvk, index])?;
// Compute the ciphertext.
let ciphertext = match &input {
Value::Plaintext(plaintext) => plaintext.encrypt_symmetric(input_view_key)?,
// Ensure the input is a plaintext.
Value::Record(..) => bail!("Expected a plaintext input, found a record input"),
Value::Future(..) => bail!("Expected a plaintext input, found a future input"),
};
// Hash the ciphertext to a field element.
let input_hash = N::hash_psd8(&ciphertext.to_fields()?)?;
// Add the input hash to the preimage.
message.push(input_hash);
// Add the input hash to the inputs.
input_ids.push(InputID::Private(input_hash));
}
// A record input is computed to its serial number.
ValueType::Record(record_name) => {
// Retrieve the record.
let record = match &input {
Value::Record(record) => record,
// Ensure the input is a record.
Value::Plaintext(..) => bail!("Expected a record input, found a plaintext input"),
Value::Future(..) => bail!("Expected a record input, found a future input"),
};
// Ensure the record belongs to the signer.
ensure!(**record.owner() == signer, "Input record for '{program_id}' must belong to the signer");
// Compute the record commitment.
let commitment = record.to_commitment(&program_id, record_name)?;
// Compute the generator `H` as `HashToGroup(commitment)`.
let h = N::hash_to_group_psd2(&[N::serial_number_domain(), commitment])?;
// Compute `h_r` as `r * H`.
let h_r = h * r;
// Compute `gamma` as `sk_sig * H`.
let gamma = h * sk_sig;
// Compute the `serial_number` from `gamma`.
let serial_number = Record::<N, Plaintext<N>>::serial_number_from_gamma(&gamma, commitment)?;
// Compute the tag.
let tag = Record::<N, Plaintext<N>>::tag(sk_tag, commitment)?;
// Add (`H`, `r * H`, `gamma`, `tag`) to the preimage.
message.extend([h, h_r, gamma].iter().map(|point| point.to_x_coordinate()));
message.push(tag);
// Add the input ID.
input_ids.push(InputID::Record(commitment, gamma, serial_number, tag));
}
// An external record input is hashed (using `tvk`) to a field element.
ValueType::ExternalRecord(..) => {
// Ensure the input is a record.
ensure!(matches!(input, Value::Record(..)), "Expected a record input");
// Construct the (console) input index as a field element.
let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
// Construct the preimage as `(function ID || input || tvk || index)`.
let mut preimage = Vec::new();
preimage.push(function_id);
preimage.extend(input.to_fields()?);
preimage.push(tvk);
preimage.push(index);
// Hash the input to a field element.
let input_hash = N::hash_psd8(&preimage)?;
// Add the input hash to the preimage.
message.push(input_hash);
// Add the input hash to the inputs.
input_ids.push(InputID::ExternalRecord(input_hash));
}
// A future is not a valid input.
ValueType::Future(..) => bail!("A future is not a valid input"),
}
}
// Compute `challenge` as `HashToScalar(r * G, pk_sig, pr_sig, signer, [tvk, tcm, function ID, input IDs])`.
let challenge = N::hash_to_scalar_psd8(&message)?;
// Compute `response` as `r - challenge * sk_sig`.
let response = r - challenge * sk_sig;
Ok(Self {
signer,
network_id: U16::new(N::ID),
program_id,
function_name,
input_ids,
inputs: prepared_inputs,
signature: Signature::from((challenge, response, compute_key)),
sk_tag,
tvk,
tcm,
})
}
}