snarkvm_console_program/data/ciphertext/
parse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

static CIPHERTEXT_PREFIX: &str = "ciphertext";

impl<N: Network> Parser for Ciphertext<N> {
    /// Parses a string into an ciphertext.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Prepare a parser for the Aleo ciphertext.
        let parse_ciphertext = recognize(pair(
            pair(tag(CIPHERTEXT_PREFIX), tag("1")),
            many1(terminated(one_of("qpzry9x8gf2tvdw0s3jn54khce6mua7l"), many0(char('_')))),
        ));

        // Parse the ciphertext from the string.
        map_res(parse_ciphertext, |ciphertext: &str| -> Result<_, Error> {
            Self::from_str(&ciphertext.replace('_', ""))
        })(string)
    }
}

impl<N: Network> FromStr for Ciphertext<N> {
    type Err = Error;

    /// Reads in the ciphertext string.
    fn from_str(ciphertext: &str) -> Result<Self, Self::Err> {
        // Decode the ciphertext string from bech32m.
        let (hrp, data, variant) = bech32::decode(ciphertext)?;
        if hrp != CIPHERTEXT_PREFIX {
            bail!("Failed to decode ciphertext: '{hrp}' is an invalid prefix")
        } else if data.is_empty() {
            bail!("Failed to decode ciphertext: data field is empty")
        } else if variant != bech32::Variant::Bech32m {
            bail!("Found an ciphertext that is not bech32m encoded: {ciphertext}");
        }
        // Decode the ciphertext data from u5 to u8, and into the ciphertext.
        Ok(Self::read_le(&Vec::from_base32(&data)?[..])?)
    }
}

impl<N: Network> Debug for Ciphertext<N> {
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network> Display for Ciphertext<N> {
    /// Writes the ciphertext as a bech32m string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Convert the ciphertext to bytes.
        let bytes = self.to_bytes_le().map_err(|_| fmt::Error)?;
        // Encode the bytes into bech32m.
        let string =
            bech32::encode(CIPHERTEXT_PREFIX, bytes.to_base32(), bech32::Variant::Bech32m).map_err(|_| fmt::Error)?;
        // Output the string.
        Display::fmt(&string, f)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use snarkvm_console_network::MainnetV0;

    type CurrentNetwork = MainnetV0;

    const ITERATIONS: u64 = 1_000;

    #[test]
    fn test_parse() -> Result<()> {
        // Ensure type and empty value fails.
        assert!(Ciphertext::<CurrentNetwork>::parse(&format!("{CIPHERTEXT_PREFIX}1")).is_err());
        assert!(Ciphertext::<CurrentNetwork>::parse("").is_err());

        let mut rng = TestRng::default();

        for _ in 0..ITERATIONS {
            // Sample a new ciphertext.
            let ciphertext =
                Ciphertext::<CurrentNetwork>((0..100).map(|_| Uniform::rand(&mut rng)).collect::<Vec<_>>());

            let expected = format!("{ciphertext}");
            let (remainder, candidate) = Ciphertext::<CurrentNetwork>::parse(&expected).unwrap();
            assert_eq!(format!("{expected}"), candidate.to_string());
            assert_eq!(CIPHERTEXT_PREFIX, candidate.to_string().split('1').next().unwrap());
            assert_eq!("", remainder);
        }
        Ok(())
    }

    #[test]
    fn test_string() -> Result<()> {
        let mut rng = TestRng::default();

        for _ in 0..ITERATIONS {
            // Sample a new ciphertext.
            let expected = Ciphertext::<CurrentNetwork>((0..100).map(|_| Uniform::rand(&mut rng)).collect::<Vec<_>>());

            // Check the string representation.
            let candidate = format!("{expected}");
            assert_eq!(expected, Ciphertext::from_str(&candidate)?);
            assert_eq!(CIPHERTEXT_PREFIX, candidate.split('1').next().unwrap());
        }
        Ok(())
    }

    #[test]
    fn test_display() -> Result<()> {
        let mut rng = TestRng::default();

        for _ in 0..ITERATIONS {
            // Sample a new ciphertext.
            let expected = Ciphertext::<CurrentNetwork>((0..100).map(|_| Uniform::rand(&mut rng)).collect::<Vec<_>>());

            let candidate = expected.to_string();
            assert_eq!(format!("{expected}"), candidate);
            assert_eq!(CIPHERTEXT_PREFIX, candidate.split('1').next().unwrap());

            let candidate_recovered = Ciphertext::<CurrentNetwork>::from_str(&candidate.to_string())?;
            assert_eq!(expected, candidate_recovered);
        }
        Ok(())
    }
}