1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// Copyright (C) 2019-2022 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{
    templates::twisted_edwards_extended::Affine,
    traits::{AffineCurve, ProjectiveCurve, TwistedEdwardsParameters as Parameters},
};
use snarkvm_fields::{impl_add_sub_from_field_ref, Field, One, PrimeField, Zero};
use snarkvm_utilities::{bititerator::BitIteratorBE, rand::Uniform, serialize::*, FromBytes, ToBytes};

use core::{
    fmt::{Display, Formatter, Result as FmtResult},
    hash::{Hash, Hasher},
    ops::{Add, AddAssign, Mul, MulAssign, Neg, Sub, SubAssign},
};
use rand::{
    distributions::{Distribution, Standard},
    Rng,
};
use std::io::{Read, Result as IoResult, Write};

#[derive(Copy, Clone, Debug)]
pub struct Projective<P: Parameters> {
    pub x: P::BaseField,
    pub y: P::BaseField,
    pub t: P::BaseField,
    pub z: P::BaseField,
}

impl<P: Parameters> Projective<P> {
    #[inline]
    pub const fn new(x: P::BaseField, y: P::BaseField, t: P::BaseField, z: P::BaseField) -> Self {
        Self { x, y, t, z }
    }
}

impl<P: Parameters> Zero for Projective<P> {
    fn zero() -> Self {
        Self::new(P::BaseField::zero(), P::BaseField::one(), P::BaseField::zero(), P::BaseField::one())
    }

    fn is_zero(&self) -> bool {
        self.x.is_zero() && self.y == self.z && !self.y.is_zero() && self.t.is_zero()
    }
}

impl<P: Parameters> Default for Projective<P> {
    #[inline]
    fn default() -> Self {
        Self::zero()
    }
}

impl<P: Parameters> Display for Projective<P> {
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        write!(f, "{}", self.to_affine())
    }
}

impl<P: Parameters> Hash for Projective<P> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.to_affine().hash(state);
    }
}

impl<P: Parameters> Eq for Projective<P> {}

impl<P: Parameters> PartialEq for Projective<P> {
    fn eq(&self, other: &Self) -> bool {
        if self.is_zero() {
            return other.is_zero();
        }

        if other.is_zero() {
            return false;
        }

        // x1/z1 == x2/z2  <==> x1 * z2 == x2 * z1
        (self.x * other.z) == (other.x * self.z) && (self.y * other.z) == (other.y * self.z)
    }
}

impl<P: Parameters> PartialEq<Affine<P>> for Projective<P> {
    fn eq(&self, other: &Affine<P>) -> bool {
        if self.is_zero() {
            return other.is_zero();
        }

        if other.is_zero() {
            return false;
        }

        // x1/z1 == x2/z2  <==> x1 * z2 == x2 * z1
        self.x == (other.x * self.z) && self.y == (other.y * self.z)
    }
}

impl<P: Parameters> Distribution<Projective<P>> for Standard {
    #[inline]
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> Projective<P> {
        loop {
            let x = P::BaseField::rand(rng);
            let greatest = rng.gen();

            if let Some(p) = Affine::from_x_coordinate(x, greatest) {
                return p.mul_by_cofactor_to_projective();
            }
        }
    }
}

impl<P: Parameters> ToBytes for Projective<P> {
    #[inline]
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        self.x.write_le(&mut writer)?;
        self.y.write_le(&mut writer)?;
        self.t.write_le(&mut writer)?;
        self.z.write_le(writer)
    }
}

impl<P: Parameters> FromBytes for Projective<P> {
    #[inline]
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        let x = P::BaseField::read_le(&mut reader)?;
        let y = P::BaseField::read_le(&mut reader)?;
        let t = P::BaseField::read_le(&mut reader)?;
        let z = P::BaseField::read_le(reader)?;
        Ok(Self::new(x, y, t, z))
    }
}

impl<P: Parameters> ProjectiveCurve for Projective<P> {
    type Affine = Affine<P>;
    type BaseField = P::BaseField;
    type ScalarField = P::ScalarField;

    fn prime_subgroup_generator() -> Self {
        Affine::prime_subgroup_generator().into()
    }

    fn is_normalized(&self) -> bool {
        self.z.is_one()
    }

    fn batch_normalization(v: &mut [Self]) {
        // Montgomery’s Trick and Fast Implementation of Masked AES
        // Genelle, Prouff and Quisquater
        // Section 3.2

        // First pass: compute [a, ab, abc, ...]
        let mut prod = Vec::with_capacity(v.len());
        let mut tmp = P::BaseField::one();
        for g in v
            .iter_mut()
            // Ignore normalized elements
            .filter(|g| !g.is_normalized())
        {
            tmp.mul_assign(&g.z);
            prod.push(tmp);
        }

        // Invert `tmp`.
        tmp = tmp.inverse().unwrap(); // Guaranteed to be nonzero.

        // Second pass: iterate backwards to compute inverses
        for (g, s) in v
            .iter_mut()
            // Backwards
            .rev()
            // Ignore normalized elements
            .filter(|g| !g.is_normalized())
            // Backwards, skip last element, fill in one for last term.
            .zip(
                prod.into_iter()
                    .rev()
                    .skip(1)
                    .chain(Some(P::BaseField::one())),
            )
        {
            // tmp := tmp * g.z; g.z := tmp * s = 1/z
            let newtmp = tmp * g.z;
            g.z = tmp * s;
            tmp = newtmp;
        }

        // Perform affine transformations
        for g in v.iter_mut().filter(|g| !g.is_normalized()) {
            g.x *= &g.z; // x/z
            g.y *= &g.z;
            g.t *= &g.z;
            g.z = P::BaseField::one(); // z = 1
        }
    }

    #[allow(clippy::many_single_char_names)]
    fn add_assign_mixed(&mut self, other: &Self::Affine) {
        // A = X1*X2
        let a = self.x * other.x;
        // B = Y1*Y2
        let b = self.y * other.y;
        // C = T1*d*T2
        let c = P::EDWARDS_D * self.t * other.t;
        // D = Z1
        let d = self.z;
        // E = (X1+Y1)*(X2+Y2)-A-B
        let e = (self.x + self.y) * (other.x + other.y) - a - b;
        // F = D-C
        let f = d - c;
        // G = D+C
        let g = d + c;
        // H = B-a*A
        let h = b - P::mul_by_a(&a);
        // X3 = E*F
        self.x = e * f;
        // Y3 = G*H
        self.y = g * h;
        // T3 = E*H
        self.t = e * h;
        // Z3 = F*G
        self.z = f * g;
    }

    #[inline]
    #[must_use]
    fn double(&self) -> Self {
        let mut result = *self;
        result.double_in_place();
        result
    }

    #[inline]
    fn double_in_place(&mut self) {
        // See "Twisted Edwards Curves Revisited"
        // Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
        // 3.3 Doubling in E^e
        // Source: https://www.hyperelliptic.org/EFD/g1p/data/twisted/extended/doubling/dbl-2008-hwcd

        // A = X1^2
        let a = self.x.square();
        // B = Y1^2
        let b = self.y.square();
        // C = 2 * Z1^2
        let c = self.z.square().double();
        // D = a * A
        let d = P::mul_by_a(&a);
        // E = (X1 + Y1)^2 - A - B
        let e = (self.x + self.y).square() - a - b;
        // G = D + B
        let g = d + b;
        // F = G - C
        let f = g - c;
        // H = D - B
        let h = d - b;
        // X3 = E * F
        self.x = e * f;
        // Y3 = G * H
        self.y = g * h;
        // T3 = E * H
        self.t = e * h;
        // Z3 = F * G
        self.z = f * g;
    }

    fn to_affine(&self) -> Affine<P> {
        (*self).into()
    }
}

impl<P: Parameters> Neg for Projective<P> {
    type Output = Self;

    fn neg(mut self) -> Self {
        self.x = -self.x;
        self.t = -self.t;
        self
    }
}

impl_add_sub_from_field_ref!(Projective, Parameters);

impl<'a, P: Parameters> Add<&'a Self> for Projective<P> {
    type Output = Self;

    fn add(self, other: &'a Self) -> Self {
        let mut copy = self;
        copy += other;
        copy
    }
}

impl<'a, P: Parameters> AddAssign<&'a Self> for Projective<P> {
    #[allow(clippy::many_single_char_names)]
    #[allow(clippy::suspicious_op_assign_impl)]
    fn add_assign(&mut self, other: &'a Self) {
        // See "Twisted Edwards Curves Revisited"
        // Huseyin Hisil, Kenneth Koon-Ho Wong, Gary Carter, and Ed Dawson
        // 3.1 Unified Addition in E^e

        // A = x1 * x2
        let a = self.x * other.x;

        // B = y1 * y2
        let b = self.y * other.y;

        // C = d * t1 * t2
        let c = P::EDWARDS_D * self.t * other.t;

        // D = z1 * z2
        let d = self.z * other.z;

        // H = B - aA
        let h = b - P::mul_by_a(&a);

        // E = (x1 + y1) * (x2 + y2) - A - B
        let e = (self.x + self.y) * (other.x + other.y) - a - b;

        // F = D - C
        let f = d - c;

        // G = D + C
        let g = d + c;

        // x3 = E * F
        self.x = e * f;

        // y3 = G * H
        self.y = g * h;

        // t3 = E * H
        self.t = e * h;

        // z3 = F * G
        self.z = f * g;
    }
}

impl<'a, P: Parameters> Sub<&'a Self> for Projective<P> {
    type Output = Self;

    fn sub(self, other: &'a Self) -> Self {
        let mut copy = self;
        copy -= other;
        copy
    }
}

impl<'a, P: Parameters> SubAssign<&'a Self> for Projective<P> {
    fn sub_assign(&mut self, other: &'a Self) {
        *self += &(-(*other));
    }
}

impl<P: Parameters> Mul<P::ScalarField> for Projective<P> {
    type Output = Self;

    /// Performs scalar multiplication of this element.
    #[allow(clippy::suspicious_arithmetic_impl)]
    #[inline]
    fn mul(self, other: P::ScalarField) -> Self {
        let mut res = Self::zero();

        let mut found_one = false;

        for i in BitIteratorBE::new(other.to_bigint()) {
            if found_one {
                res.double_in_place();
            } else {
                found_one = i;
            }

            if i {
                res += self;
            }
        }

        res
    }
}

impl<P: Parameters> MulAssign<P::ScalarField> for Projective<P> {
    /// Performs scalar multiplication of this element.
    fn mul_assign(&mut self, other: P::ScalarField) {
        *self = *self * other
    }
}

// The affine point (X, Y) is represented in the Extended Projective coordinates with Z = 1.
impl<P: Parameters> From<Affine<P>> for Projective<P> {
    fn from(p: Affine<P>) -> Projective<P> {
        Self::new(p.x, p.y, p.x * p.y, P::BaseField::one())
    }
}