1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![allow(dead_code)]
use crate::{FieldParameters, PrimeField};
use snarkvm_utilities::{vec::Vec, FromBits};
use anyhow::{bail, Result};
pub struct PoseidonGrainLFSR {
pub field_size_in_bits: u64,
pub state: [bool; 80],
pub head: usize,
}
impl PoseidonGrainLFSR {
pub fn new(
is_sbox_an_inverse: bool,
field_size_in_bits: u64,
state_len: u64,
num_full_rounds: u64,
num_partial_rounds: u64,
) -> Self {
let mut state = [false; 80];
// b0, b1 describes the field
state[1] = true;
// b2, ..., b5 describes the S-BOX
state[5] = is_sbox_an_inverse;
// b6, ..., b17 are the binary representation of n (prime_num_bits)
{
let mut cur = field_size_in_bits;
for i in (6..=17).rev() {
state[i] = cur & 1 == 1;
cur >>= 1;
}
}
// b18, ..., b29 are the binary representation of t (state_len, rate + capacity)
{
let mut cur = state_len;
for i in (18..=29).rev() {
state[i] = cur & 1 == 1;
cur >>= 1;
}
}
// b30, ..., b39 are the binary representation of R_F (the number of full rounds)
{
let mut cur = num_full_rounds;
for i in (30..=39).rev() {
state[i] = cur & 1 == 1;
cur >>= 1;
}
}
// b40, ..., b49 are the binary representation of R_P (the number of partial rounds)
{
let mut cur = num_partial_rounds;
for i in (40..=49).rev() {
state[i] = cur & 1 == 1;
cur >>= 1;
}
}
// b50, ..., b79 are set to 1
state[50..=79].copy_from_slice(&[true; 30]);
// Initialize.
let mut res = Self { field_size_in_bits, state, head: 0 };
for _ in 0..160 {
res.next_bit();
}
res
}
pub fn get_field_elements_rejection_sampling<F: PrimeField>(&mut self, num_elements: usize) -> Result<Vec<F>> {
// Ensure the number of bits matches the modulus.
if self.field_size_in_bits != F::Parameters::MODULUS_BITS as u64 {
bail!("The number of bits in the field must match the modulus");
}
let mut output = Vec::with_capacity(num_elements);
let mut bits = Vec::with_capacity(self.field_size_in_bits as usize);
for _ in 0..num_elements {
// Perform rejection sampling.
loop {
// Obtain `n` bits and make it most-significant-bit first.
bits.extend(self.get_bits(self.field_size_in_bits as usize));
bits.reverse();
// Construct the number.
let bigint = F::BigInteger::from_bits_le(&bits)?;
bits.clear();
// Ensure the number is in the field.
if let Some(element) = F::from_bigint(bigint) {
output.push(element);
break;
}
}
}
Ok(output)
}
pub fn get_field_elements_mod_p<F: PrimeField>(&mut self, num_elems: usize) -> Result<Vec<F>> {
// Ensure the number of bits matches the modulus.
if self.field_size_in_bits != F::Parameters::MODULUS_BITS as u64 {
bail!("The number of bits in the field must match the modulus");
}
let mut output = Vec::with_capacity(num_elems);
for _ in 0..num_elems {
// Obtain `n` bits and make it most-significant-bit first.
let bits_iter = self.get_bits(self.field_size_in_bits as usize);
let mut bits = Vec::with_capacity(bits_iter.len());
for bit in bits_iter {
bits.push(bit);
}
bits.reverse();
let bytes = bits
.chunks(8)
.map(|chunk| {
let mut sum = chunk[0] as u8;
let mut cur = 1;
for i in chunk.iter().skip(1) {
cur *= 2;
sum += cur * (*i as u8);
}
sum
})
.rev()
.collect::<Vec<u8>>();
output.push(F::from_bytes_be_mod_order(&bytes));
}
Ok(output)
}
}
impl PoseidonGrainLFSR {
#[inline]
fn get_bits(&mut self, num_bits: usize) -> LFSRIter<'_> {
LFSRIter { lfsr: self, num_bits, current_bit: 0 }
}
#[inline]
fn next_bit(&mut self) -> bool {
let next_bit = self.state[(self.head + 62) % 80]
^ self.state[(self.head + 51) % 80]
^ self.state[(self.head + 38) % 80]
^ self.state[(self.head + 23) % 80]
^ self.state[(self.head + 13) % 80]
^ self.state[self.head];
self.state[self.head] = next_bit;
self.head += 1;
self.head %= 80;
next_bit
}
}
pub struct LFSRIter<'a> {
lfsr: &'a mut PoseidonGrainLFSR,
num_bits: usize,
current_bit: usize,
}
impl<'a> Iterator for LFSRIter<'a> {
type Item = bool;
fn next(&mut self) -> Option<Self::Item> {
if self.current_bit < self.num_bits {
// Obtain the first bit
let mut new_bit = self.lfsr.next_bit();
// Loop until the first bit is true
while !new_bit {
// Discard the second bit
let _ = self.lfsr.next_bit();
// Obtain another first bit
new_bit = self.lfsr.next_bit();
}
self.current_bit += 1;
// Obtain the second bit
Some(self.lfsr.next_bit())
} else {
None
}
}
}
impl<'a> ExactSizeIterator for LFSRIter<'a> {
fn len(&self) -> usize {
self.num_bits
}
}