1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    impl_add_sub_from_field_ref,
    impl_mul_div_from_field_ref,
    FftField,
    Field,
    FieldError,
    FieldParameters,
    LegendreSymbol,
    One,
    PoseidonDefaultField,
    PoseidonDefaultParameters,
    PrimeField,
    SquareRootField,
    Zero,
};
use snarkvm_utilities::{
    biginteger::{arithmetic as fa, BigInteger as _BigInteger, BigInteger256 as BigInteger},
    serialize::CanonicalDeserialize,
    FromBytes,
    ToBits,
    ToBytes,
};

use std::{
    cmp::{Ord, Ordering, PartialOrd},
    fmt::{Debug, Display, Formatter, Result as FmtResult},
    io::{Read, Result as IoResult, Write},
    marker::PhantomData,
    ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
    str::FromStr,
};
use zeroize::Zeroize;

pub trait Fp256Parameters: FieldParameters<BigInteger = BigInteger> {}

#[derive(Copy, Clone, Default, PartialEq, Eq, Hash, Zeroize)]
pub struct Fp256<P: Fp256Parameters>(pub BigInteger, #[doc(hidden)] pub PhantomData<P>);

impl<P: Fp256Parameters> Fp256<P> {
    #[inline]
    fn is_valid(&self) -> bool {
        self.0 < P::MODULUS
    }

    #[inline]
    fn reduce(&mut self) {
        if !self.is_valid() {
            self.0.sub_noborrow(&P::MODULUS);
        }
    }

    #[inline(always)]
    #[allow(clippy::too_many_arguments)]
    fn mont_reduce(
        &mut self,
        r0: u64,
        mut r1: u64,
        mut r2: u64,
        mut r3: u64,
        mut r4: u64,
        mut r5: u64,
        mut r6: u64,
        mut r7: u64,
    ) {
        // The Montgomery reduction here is based on Algorithm 14.32 in
        // Handbook of Applied Cryptography
        // <http://cacr.uwaterloo.ca/hac/about/chap14.pdf>.

        let k = r0.wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r0, k, P::MODULUS.0[0], &mut carry);
        r1 = fa::mac_with_carry(r1, k, P::MODULUS.0[1], &mut carry);
        r2 = fa::mac_with_carry(r2, k, P::MODULUS.0[2], &mut carry);
        r3 = fa::mac_with_carry(r3, k, P::MODULUS.0[3], &mut carry);
        carry = fa::adc(&mut r4, 0, carry);
        let carry2 = carry;
        let k = r1.wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r1, k, P::MODULUS.0[0], &mut carry);
        r2 = fa::mac_with_carry(r2, k, P::MODULUS.0[1], &mut carry);
        r3 = fa::mac_with_carry(r3, k, P::MODULUS.0[2], &mut carry);
        r4 = fa::mac_with_carry(r4, k, P::MODULUS.0[3], &mut carry);
        carry = fa::adc(&mut r5, carry2, carry);
        let carry2 = carry;
        let k = r2.wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r2, k, P::MODULUS.0[0], &mut carry);
        r3 = fa::mac_with_carry(r3, k, P::MODULUS.0[1], &mut carry);
        r4 = fa::mac_with_carry(r4, k, P::MODULUS.0[2], &mut carry);
        r5 = fa::mac_with_carry(r5, k, P::MODULUS.0[3], &mut carry);
        carry = fa::adc(&mut r6, carry2, carry);
        let carry2 = carry;
        let k = r3.wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r3, k, P::MODULUS.0[0], &mut carry);
        r4 = fa::mac_with_carry(r4, k, P::MODULUS.0[1], &mut carry);
        r5 = fa::mac_with_carry(r5, k, P::MODULUS.0[2], &mut carry);
        r6 = fa::mac_with_carry(r6, k, P::MODULUS.0[3], &mut carry);
        fa::adc(&mut r7, carry2, carry);
        (self.0).0[0] = r4;
        (self.0).0[1] = r5;
        (self.0).0[2] = r6;
        (self.0).0[3] = r7;
        self.reduce();
    }
}

impl<P: Fp256Parameters> Zero for Fp256<P> {
    #[inline]
    fn zero() -> Self {
        Self(BigInteger::from(0), PhantomData)
    }

    #[inline]
    fn is_zero(&self) -> bool {
        self.0.is_zero()
    }
}

impl<P: Fp256Parameters> One for Fp256<P> {
    #[inline]
    fn one() -> Self {
        Self(P::R, PhantomData)
    }

    #[inline]
    fn is_one(&self) -> bool {
        self.0 == P::R
    }
}

impl<P: Fp256Parameters> Field for Fp256<P> {
    type BasePrimeField = Self;

    // 256/64 = 4 limbs.
    impl_field_from_random_bytes_with_flags!(4);

    fn from_base_prime_field(other: Self::BasePrimeField) -> Self {
        other
    }

    /// Returns the constant 2^{-1}.
    fn half() -> Self {
        // Compute 1/2 `(p+1)/2` as `1/2`.
        // This is cheaper than `Self::one().double().inverse()`
        let mut two_inv = P::MODULUS;
        two_inv.add_nocarry(&1u64.into());
        two_inv.div2();
        Self::from_bigint(two_inv).unwrap() // Guaranteed to be valid.
    }

    fn sum_of_products<'a>(
        a: impl Iterator<Item = &'a Self> + Clone,
        b: impl Iterator<Item = &'a Self> + Clone,
    ) -> Self {
        // For a single `a x b` multiplication, operand scanning (schoolbook) takes each
        // limb of `a` in turn, and multiplies it by all of the limbs of `b` to compute
        // the result as a double-width intermediate representation, which is then fully
        // reduced at the end. Here however we have pairs of multiplications (a_i, b_i),
        // the results of which are summed.
        //
        // The intuition for this algorithm is two-fold:
        // - We can interleave the operand scanning for each pair, by processing the jth
        //   limb of each `a_i` together. As these have the same offset within the overall
        //   operand scanning flow, their results can be summed directly.
        // - We can interleave the multiplication and reduction steps, resulting in a
        //   single bitshift by the limb size after each iteration. This means we only
        //   need to store a single extra limb overall, instead of keeping around all the
        //   intermediate results and eventually having twice as many limbs.

        // Algorithm 2, line 2
        let (u0, u1, u2, u3) = (0..4).fold((0, 0, 0, 0), |(u0, u1, u2, u3), j| {
            // Algorithm 2, line 3
            // For each pair in the overall sum of products:
            let (t0, t1, t2, t3, mut t4) =
                a.clone().zip(b.clone()).fold((u0, u1, u2, u3, 0), |(t0, t1, t2, t3, mut t4), (a, b)| {
                    // Compute digit_j x row and accumulate into `u`.
                    let mut carry = 0;
                    let t0 = fa::mac_with_carry(t0, a.0.0[j], b.0.0[0], &mut carry);
                    let t1 = fa::mac_with_carry(t1, a.0.0[j], b.0.0[1], &mut carry);
                    let t2 = fa::mac_with_carry(t2, a.0.0[j], b.0.0[2], &mut carry);
                    let t3 = fa::mac_with_carry(t3, a.0.0[j], b.0.0[3], &mut carry);
                    let _ = fa::adc(&mut t4, 0, carry);

                    (t0, t1, t2, t3, t4)
                });

            // Algorithm 2, lines 4-5
            // This is a single step of the usual Montgomery reduction process.
            let k = t0.wrapping_mul(P::INV);
            let mut carry = 0;
            let _ = fa::mac_with_carry(t0, k, P::MODULUS.0[0], &mut carry);
            let r1 = fa::mac_with_carry(t1, k, P::MODULUS.0[1], &mut carry);
            let r2 = fa::mac_with_carry(t2, k, P::MODULUS.0[2], &mut carry);
            let r3 = fa::mac_with_carry(t3, k, P::MODULUS.0[3], &mut carry);
            let _ = fa::adc(&mut t4, 0, carry);
            let r4 = t4;

            (r1, r2, r3, r4)
        });

        // Because we represent F_p elements in non-redundant form, we need a final
        // conditional subtraction to ensure the output is in range.
        let mut result = Self(BigInteger([u0, u1, u2, u3]), PhantomData);
        result.reduce();
        result
    }

    #[inline]
    fn double(&self) -> Self {
        let mut temp = *self;
        temp.double_in_place();
        temp
    }

    #[inline]
    fn double_in_place(&mut self) {
        // This cannot exceed the backing capacity.
        self.0.mul2();
        // However, it may need to be reduced.
        self.reduce();
    }

    #[inline]
    fn characteristic<'a>() -> &'a [u64] {
        P::MODULUS.as_ref()
    }

    #[inline]
    fn square(&self) -> Self {
        let mut temp = *self;
        temp.square_in_place();
        temp
    }

    #[inline]
    fn square_in_place(&mut self) -> &mut Self {
        // i = 0
        let mut carry = 0;
        let r1 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
        let r2 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
        let r3 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[3], &mut carry);
        let r4 = carry;
        let mut carry = 0;
        let r3 = fa::mac_with_carry(r3, (self.0).0[1], (self.0).0[2], &mut carry);
        let r4 = fa::mac_with_carry(r4, (self.0).0[1], (self.0).0[3], &mut carry);
        let r5 = carry;
        let mut carry = 0;
        let r5 = fa::mac_with_carry(r5, (self.0).0[2], (self.0).0[3], &mut carry);
        let r6 = carry;

        let mut r7 = r6 >> 63;
        let r6 = (r6 << 1) | (r5 >> 63);
        let mut r5 = (r5 << 1) | (r4 >> 63);
        let r4 = (r4 << 1) | (r3 >> 63);
        let mut r3 = (r3 << 1) | (r2 >> 63);
        let r2 = (r2 << 1) | (r1 >> 63);
        let mut r1 = r1 << 1;

        let mut carry = 0;
        let r0 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[0], &mut carry);
        carry = fa::adc(&mut r1, 0, carry);
        let r2 = fa::mac_with_carry(r2, (self.0).0[1], (self.0).0[1], &mut carry);
        carry = fa::adc(&mut r3, 0, carry);
        let r4 = fa::mac_with_carry(r4, (self.0).0[2], (self.0).0[2], &mut carry);
        carry = fa::adc(&mut r5, 0, carry);
        let r6 = fa::mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
        fa::adc(&mut r7, 0, carry);

        self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
        self
    }

    #[inline]
    fn inverse(&self) -> Option<Self> {
        if self.is_zero() {
            None
        } else {
            // Guajardo Kumar Paar Pelzl
            // Efficient Software-Implementation of Finite Fields with Applications to
            // Cryptography
            // Algorithm 16 (BEA for Inversion in Fp)

            let one = BigInteger::from(1);

            let mut u = self.0;
            let mut v = P::MODULUS;
            let mut b = Self(P::R2, PhantomData); // Avoids unnecessary reduction step.
            let mut c = Self::zero();

            while u != one && v != one {
                while u.is_even() {
                    u.div2();

                    if b.0.is_even() {
                        b.0.div2();
                    } else {
                        b.0.add_nocarry(&P::MODULUS);
                        b.0.div2();
                    }
                }

                while v.is_even() {
                    v.div2();

                    if c.0.is_even() {
                        c.0.div2();
                    } else {
                        c.0.add_nocarry(&P::MODULUS);
                        c.0.div2();
                    }
                }

                if v < u {
                    u.sub_noborrow(&v);
                    b.sub_assign(&c);
                } else {
                    v.sub_noborrow(&u);
                    c.sub_assign(&b);
                }
            }

            if u == one { Some(b) } else { Some(c) }
        }
    }

    fn inverse_in_place(&mut self) -> Option<&mut Self> {
        if let Some(inverse) = self.inverse() {
            *self = inverse;
            Some(self)
        } else {
            None
        }
    }

    #[inline]
    fn frobenius_map(&mut self, _: usize) {
        // No-op: No effect in a prime field.
    }
}

impl<P: Fp256Parameters> PrimeField for Fp256<P> {
    type BigInteger = BigInteger;
    type Parameters = P;

    #[inline]
    fn from_bigint(r: BigInteger) -> Option<Self> {
        let mut r = Fp256(r, PhantomData);
        if r.is_zero() {
            Some(r)
        } else if r.is_valid() {
            r *= &Fp256(P::R2, PhantomData);
            Some(r)
        } else {
            None
        }
    }

    #[inline]
    fn to_bigint(&self) -> BigInteger {
        let mut tmp = self.0;
        let mut r = tmp.0;
        // Montgomery Reduction
        let k = r[0].wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r[0], k, P::MODULUS.0[0], &mut carry);
        r[1] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry);
        r[2] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry);
        r[3] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry);
        r[0] = carry;

        let k = r[1].wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r[1], k, P::MODULUS.0[0], &mut carry);
        r[2] = fa::mac_with_carry(r[2], k, P::MODULUS.0[1], &mut carry);
        r[3] = fa::mac_with_carry(r[3], k, P::MODULUS.0[2], &mut carry);
        r[0] = fa::mac_with_carry(r[0], k, P::MODULUS.0[3], &mut carry);
        r[1] = carry;

        let k = r[2].wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r[2], k, P::MODULUS.0[0], &mut carry);
        r[3] = fa::mac_with_carry(r[3], k, P::MODULUS.0[1], &mut carry);
        r[0] = fa::mac_with_carry(r[0], k, P::MODULUS.0[2], &mut carry);
        r[1] = fa::mac_with_carry(r[1], k, P::MODULUS.0[3], &mut carry);
        r[2] = carry;

        let k = r[3].wrapping_mul(P::INV);
        let mut carry = 0;
        fa::mac_with_carry(r[3], k, P::MODULUS.0[0], &mut carry);
        r[0] = fa::mac_with_carry(r[0], k, P::MODULUS.0[1], &mut carry);
        r[1] = fa::mac_with_carry(r[1], k, P::MODULUS.0[2], &mut carry);
        r[2] = fa::mac_with_carry(r[2], k, P::MODULUS.0[3], &mut carry);
        r[3] = carry;

        tmp.0 = r;
        tmp
    }

    #[inline]
    fn decompose(
        &self,
        q1: &[u64; 4],
        q2: &[u64; 4],
        b1: Self,
        b2: Self,
        r128: Self,
        half_r: &[u64; 8],
    ) -> (Self, Self, bool, bool) {
        let mul_short = |a: &[u64; 4], b: &[u64; 4]| -> [u64; 8] {
            // Schoolbook multiplication
            let mut carry = 0;
            let r0 = fa::mac_with_carry(0, a[0], b[0], &mut carry);
            let r1 = fa::mac_with_carry(0, a[0], b[1], &mut carry);
            let r2 = fa::mac_with_carry(0, a[0], b[2], &mut carry);
            let r3 = carry;

            let mut carry = 0;
            let r1 = fa::mac_with_carry(r1, a[1], b[0], &mut carry);
            let r2 = fa::mac_with_carry(r2, a[1], b[1], &mut carry);
            let r3 = fa::mac_with_carry(r3, a[1], b[2], &mut carry);
            let r4 = carry;

            let mut carry = 0;
            let r2 = fa::mac_with_carry(r2, a[2], b[0], &mut carry);
            let r3 = fa::mac_with_carry(r3, a[2], b[1], &mut carry);
            let r4 = fa::mac_with_carry(r4, a[2], b[2], &mut carry);
            let r5 = carry;

            let mut carry = 0;
            let r3 = fa::mac_with_carry(r3, a[3], b[0], &mut carry);
            let r4 = fa::mac_with_carry(r4, a[3], b[1], &mut carry);
            let r5 = fa::mac_with_carry(r5, a[3], b[2], &mut carry);
            let r6 = carry;

            [r0, r1, r2, r3, r4, r5, r6, 0]
        };

        let round = |a: &mut [u64; 8]| -> Self {
            let mut carry = 0;
            // NOTE: can the first 4 be omitted?
            carry = fa::adc(&mut a[0], half_r[0], carry);
            carry = fa::adc(&mut a[1], half_r[1], carry);
            carry = fa::adc(&mut a[2], half_r[2], carry);
            carry = fa::adc(&mut a[3], half_r[3], carry);
            carry = fa::adc(&mut a[4], half_r[4], carry);
            carry = fa::adc(&mut a[5], half_r[5], carry);
            carry = fa::adc(&mut a[6], half_r[6], carry);
            _ = fa::adc(&mut a[7], half_r[7], carry);
            Self::from_bigint(BigInteger([a[4], a[5], a[6], a[7]])).unwrap()
        };

        let alpha = |x: &Self, q: &[u64; 4]| -> Self {
            let mut a = mul_short(&x.to_bigint().0, q);
            round(&mut a)
        };

        let alpha1 = alpha(self, q1);
        let alpha2 = alpha(self, q2);
        let z1 = alpha1 * b1;
        let z2 = alpha2 * b2;

        let mut k1 = *self - z1 - alpha2;
        let mut k2 = z2 - alpha1;
        let mut k1_neg = false;
        let mut k2_neg = false;

        if k1 > r128 {
            k1 = -k1;
            k1_neg = true;
        }

        if k2 > r128 {
            k2 = -k2;
            k2_neg = true;
        }

        (k1, k2, k1_neg, k2_neg)
    }
}

impl<P: Fp256Parameters> FftField for Fp256<P> {
    type FftParameters = P;

    #[inline]
    fn two_adic_root_of_unity() -> Self {
        Self(P::TWO_ADIC_ROOT_OF_UNITY, PhantomData)
    }

    #[inline]
    fn large_subgroup_root_of_unity() -> Option<Self> {
        Some(Self(P::LARGE_SUBGROUP_ROOT_OF_UNITY?, PhantomData))
    }

    #[inline]
    fn multiplicative_generator() -> Self {
        Self(P::GENERATOR, PhantomData)
    }
}

impl<P: Fp256Parameters> SquareRootField for Fp256<P> {
    #[inline]
    fn legendre(&self) -> LegendreSymbol {
        use crate::LegendreSymbol::*;

        // s = self^((MODULUS - 1) // 2)
        let mut s = self.pow(P::MODULUS_MINUS_ONE_DIV_TWO);
        s.reduce();

        if s.is_zero() {
            Zero
        } else if s.is_one() {
            QuadraticResidue
        } else {
            QuadraticNonResidue
        }
    }

    #[inline]
    fn sqrt(&self) -> Option<Self> {
        sqrt_impl!(Self, P, self)
    }

    fn sqrt_in_place(&mut self) -> Option<&mut Self> {
        (*self).sqrt().map(|sqrt| {
            *self = sqrt;
            self
        })
    }
}

/// `Fp` elements are ordered lexicographically.
impl<P: Fp256Parameters> Ord for Fp256<P> {
    #[inline(always)]
    fn cmp(&self, other: &Self) -> Ordering {
        self.to_bigint().cmp(&other.to_bigint())
    }
}

impl<P: Fp256Parameters> PartialOrd for Fp256<P> {
    #[inline(always)]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<P: Fp256Parameters + PoseidonDefaultParameters> PoseidonDefaultField for Fp256<P> {}

impl_primefield_from_int!(Fp256, u128, Fp256Parameters);
impl_primefield_from_int!(Fp256, u64, Fp256Parameters);
impl_primefield_from_int!(Fp256, u32, Fp256Parameters);
impl_primefield_from_int!(Fp256, u16, Fp256Parameters);
impl_primefield_from_int!(Fp256, u8, Fp256Parameters);

impl_primefield_standard_sample!(Fp256, Fp256Parameters);

impl_add_sub_from_field_ref!(Fp256, Fp256Parameters);
impl_mul_div_from_field_ref!(Fp256, Fp256Parameters);

impl<P: Fp256Parameters> ToBits for Fp256<P> {
    fn write_bits_le(&self, vec: &mut Vec<bool>) {
        let initial_len = vec.len();
        self.to_bigint().write_bits_le(vec);
        vec.truncate(initial_len + P::MODULUS_BITS as usize);
    }

    fn write_bits_be(&self, vec: &mut Vec<bool>) {
        let initial_len = vec.len();
        self.write_bits_le(vec);
        vec[initial_len..].reverse();
    }

    fn num_bits() -> Option<usize> {
        Some(256)
    }
}

impl<P: Fp256Parameters> ToBytes for Fp256<P> {
    #[inline]
    fn write_le<W: Write>(&self, writer: W) -> IoResult<()> {
        self.to_bigint().write_le(writer)
    }
}

impl<P: Fp256Parameters> FromBytes for Fp256<P> {
    #[inline]
    fn read_le<R: Read>(reader: R) -> IoResult<Self> {
        BigInteger::read_le(reader).and_then(|b| match Self::from_bigint(b) {
            Some(f) => Ok(f),
            None => Err(FieldError::InvalidFieldElement.into()),
        })
    }
}

impl<P: Fp256Parameters> FromStr for Fp256<P> {
    type Err = FieldError;

    /// Interpret a string of numbers as a (congruent) prime field element.
    /// Does not accept unnecessary leading zeroes or a blank string.
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        if s.is_empty() {
            return Err(FieldError::ParsingEmptyString);
        }

        if s == "0" {
            return Ok(Self::zero());
        }

        let mut res = Self::zero();

        let ten =
            Self::from_bigint(<Self as PrimeField>::BigInteger::from(10)).ok_or(FieldError::InvalidFieldElement)?;

        let mut first_digit = true;

        for c in s.chars() {
            match c.to_digit(10) {
                Some(c) => {
                    if first_digit {
                        if c == 0 {
                            return Err(FieldError::InvalidString);
                        }

                        first_digit = false;
                    }

                    res.mul_assign(&ten);
                    res.add_assign(
                        &Self::from_bigint(<Self as PrimeField>::BigInteger::from(u64::from(c)))
                            .ok_or(FieldError::InvalidFieldElement)?,
                    );
                }
                None => return Err(FieldError::ParsingNonDigitCharacter),
            }
        }

        if !res.is_valid() { Err(FieldError::InvalidFieldElement) } else { Ok(res) }
    }
}

impl<P: Fp256Parameters> Debug for Fp256<P> {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        write!(f, "{}", self.to_bigint())
    }
}

impl<P: Fp256Parameters> Display for Fp256<P> {
    #[inline]
    fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
        write!(f, "{}", self.to_bigint())
    }
}

impl<P: Fp256Parameters> Neg for Fp256<P> {
    type Output = Self;

    #[inline]
    #[must_use]
    fn neg(self) -> Self {
        if !self.is_zero() {
            let mut tmp = P::MODULUS;
            tmp.sub_noborrow(&self.0);
            Self(tmp, PhantomData)
        } else {
            self
        }
    }
}

impl<'a, P: Fp256Parameters> Add<&'a Fp256<P>> for Fp256<P> {
    type Output = Self;

    #[inline]
    fn add(self, other: &Self) -> Self {
        let mut result = self;
        result.add_assign(other);
        result
    }
}

impl<'a, P: Fp256Parameters> Sub<&'a Fp256<P>> for Fp256<P> {
    type Output = Self;

    #[inline]
    fn sub(self, other: &Self) -> Self {
        let mut result = self;
        result.sub_assign(other);
        result
    }
}

impl<'a, P: Fp256Parameters> Mul<&'a Fp256<P>> for Fp256<P> {
    type Output = Self;

    #[inline]
    fn mul(self, other: &Self) -> Self {
        let mut result = self;
        result.mul_assign(other);
        result
    }
}

impl<'a, P: Fp256Parameters> Div<&'a Fp256<P>> for Fp256<P> {
    type Output = Self;

    #[inline]
    fn div(self, other: &Self) -> Self {
        let mut result = self;
        result.mul_assign(&other.inverse().unwrap());
        result
    }
}

impl<'a, P: Fp256Parameters> AddAssign<&'a Self> for Fp256<P> {
    #[inline]
    fn add_assign(&mut self, other: &Self) {
        // This cannot exceed the backing capacity.
        self.0.add_nocarry(&other.0);
        // However, it may need to be reduced.
        self.reduce();
    }
}

impl<'a, P: Fp256Parameters> SubAssign<&'a Self> for Fp256<P> {
    #[inline]
    fn sub_assign(&mut self, other: &Self) {
        // If `other` is larger than `self`, add the modulus to self first.
        if other.0 > self.0 {
            self.0.add_nocarry(&P::MODULUS);
        }

        self.0.sub_noborrow(&other.0);
    }
}

impl<'a, P: Fp256Parameters> MulAssign<&'a Self> for Fp256<P> {
    #[inline]
    fn mul_assign(&mut self, other: &Self) {
        let mut r = [0u64; 4];
        let mut carry1 = 0u64;
        let mut carry2 = 0u64;

        // Iteration 0.
        r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[0], &mut carry1);
        let k = r[0].wrapping_mul(P::INV);
        fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
        r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[0], &mut carry1);
        r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);

        r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[0], &mut carry1);
        r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);

        r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[0], &mut carry1);
        r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
        r[3] = carry1 + carry2;

        // Iteration 1.
        r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[1], &mut carry1);
        let k = r[0].wrapping_mul(P::INV);
        fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
        r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[1], &mut carry1);
        r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);

        r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[1], &mut carry1);
        r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);

        r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[1], &mut carry1);
        r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
        r[3] = carry1 + carry2;

        // Iteration 2.
        r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[2], &mut carry1);
        let k = r[0].wrapping_mul(P::INV);
        fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
        r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[2], &mut carry1);
        r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);

        r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[2], &mut carry1);
        r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);

        r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[2], &mut carry1);
        r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
        r[3] = carry1 + carry2;

        // Iteration 3.
        r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[3], &mut carry1);
        let k = r[0].wrapping_mul(P::INV);
        fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
        r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[3], &mut carry1);
        r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);

        r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[3], &mut carry1);
        r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);

        r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[3], &mut carry1);
        r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
        r[3] = carry1 + carry2;

        (self.0).0 = r;
        self.reduce();
    }
}

impl<'a, P: Fp256Parameters> DivAssign<&'a Self> for Fp256<P> {
    #[inline]
    fn div_assign(&mut self, other: &Self) {
        self.mul_assign(&other.inverse().unwrap());
    }
}