use crate::{
impl_add_sub_from_field_ref,
impl_mul_div_from_field_ref,
FftField,
Field,
FieldError,
FieldParameters,
LegendreSymbol,
One,
PoseidonDefaultField,
PoseidonDefaultParameters,
PrimeField,
SquareRootField,
Zero,
};
use snarkvm_utilities::{
biginteger::{arithmetic as fa, BigInteger as _BigInteger, BigInteger256 as BigInteger},
serialize::CanonicalDeserialize,
FromBytes,
ToBits,
ToBytes,
};
use std::{
cmp::{Ord, Ordering, PartialOrd},
fmt::{Debug, Display, Formatter, Result as FmtResult},
io::{Read, Result as IoResult, Write},
marker::PhantomData,
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Sub, SubAssign},
str::FromStr,
};
use zeroize::Zeroize;
pub trait Fp256Parameters: FieldParameters<BigInteger = BigInteger> {}
#[derive(Copy, Clone, Default, PartialEq, Eq, Hash, Zeroize)]
pub struct Fp256<P: Fp256Parameters>(pub BigInteger, #[doc(hidden)] pub PhantomData<P>);
impl<P: Fp256Parameters> Fp256<P> {
#[inline]
fn is_valid(&self) -> bool {
self.0 < P::MODULUS
}
#[inline]
fn reduce(&mut self) {
if !self.is_valid() {
self.0.sub_noborrow(&P::MODULUS);
}
}
#[inline(always)]
#[allow(clippy::too_many_arguments)]
fn mont_reduce(
&mut self,
r0: u64,
mut r1: u64,
mut r2: u64,
mut r3: u64,
mut r4: u64,
mut r5: u64,
mut r6: u64,
mut r7: u64,
) {
let k = r0.wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r0, k, P::MODULUS.0[0], &mut carry);
r1 = fa::mac_with_carry(r1, k, P::MODULUS.0[1], &mut carry);
r2 = fa::mac_with_carry(r2, k, P::MODULUS.0[2], &mut carry);
r3 = fa::mac_with_carry(r3, k, P::MODULUS.0[3], &mut carry);
carry = fa::adc(&mut r4, 0, carry);
let carry2 = carry;
let k = r1.wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r1, k, P::MODULUS.0[0], &mut carry);
r2 = fa::mac_with_carry(r2, k, P::MODULUS.0[1], &mut carry);
r3 = fa::mac_with_carry(r3, k, P::MODULUS.0[2], &mut carry);
r4 = fa::mac_with_carry(r4, k, P::MODULUS.0[3], &mut carry);
carry = fa::adc(&mut r5, carry2, carry);
let carry2 = carry;
let k = r2.wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r2, k, P::MODULUS.0[0], &mut carry);
r3 = fa::mac_with_carry(r3, k, P::MODULUS.0[1], &mut carry);
r4 = fa::mac_with_carry(r4, k, P::MODULUS.0[2], &mut carry);
r5 = fa::mac_with_carry(r5, k, P::MODULUS.0[3], &mut carry);
carry = fa::adc(&mut r6, carry2, carry);
let carry2 = carry;
let k = r3.wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r3, k, P::MODULUS.0[0], &mut carry);
r4 = fa::mac_with_carry(r4, k, P::MODULUS.0[1], &mut carry);
r5 = fa::mac_with_carry(r5, k, P::MODULUS.0[2], &mut carry);
r6 = fa::mac_with_carry(r6, k, P::MODULUS.0[3], &mut carry);
fa::adc(&mut r7, carry2, carry);
(self.0).0[0] = r4;
(self.0).0[1] = r5;
(self.0).0[2] = r6;
(self.0).0[3] = r7;
self.reduce();
}
}
impl<P: Fp256Parameters> Zero for Fp256<P> {
#[inline]
fn zero() -> Self {
Self(BigInteger::from(0), PhantomData)
}
#[inline]
fn is_zero(&self) -> bool {
self.0.is_zero()
}
}
impl<P: Fp256Parameters> One for Fp256<P> {
#[inline]
fn one() -> Self {
Self(P::R, PhantomData)
}
#[inline]
fn is_one(&self) -> bool {
self.0 == P::R
}
}
impl<P: Fp256Parameters> Field for Fp256<P> {
type BasePrimeField = Self;
impl_field_from_random_bytes_with_flags!(4);
fn from_base_prime_field(other: Self::BasePrimeField) -> Self {
other
}
fn half() -> Self {
let mut two_inv = P::MODULUS;
two_inv.add_nocarry(&1u64.into());
two_inv.div2();
Self::from_bigint(two_inv).unwrap() }
fn sum_of_products<'a>(
a: impl Iterator<Item = &'a Self> + Clone,
b: impl Iterator<Item = &'a Self> + Clone,
) -> Self {
let (u0, u1, u2, u3) = (0..4).fold((0, 0, 0, 0), |(u0, u1, u2, u3), j| {
let (t0, t1, t2, t3, mut t4) =
a.clone().zip(b.clone()).fold((u0, u1, u2, u3, 0), |(t0, t1, t2, t3, mut t4), (a, b)| {
let mut carry = 0;
let t0 = fa::mac_with_carry(t0, a.0.0[j], b.0.0[0], &mut carry);
let t1 = fa::mac_with_carry(t1, a.0.0[j], b.0.0[1], &mut carry);
let t2 = fa::mac_with_carry(t2, a.0.0[j], b.0.0[2], &mut carry);
let t3 = fa::mac_with_carry(t3, a.0.0[j], b.0.0[3], &mut carry);
let _ = fa::adc(&mut t4, 0, carry);
(t0, t1, t2, t3, t4)
});
let k = t0.wrapping_mul(P::INV);
let mut carry = 0;
let _ = fa::mac_with_carry(t0, k, P::MODULUS.0[0], &mut carry);
let r1 = fa::mac_with_carry(t1, k, P::MODULUS.0[1], &mut carry);
let r2 = fa::mac_with_carry(t2, k, P::MODULUS.0[2], &mut carry);
let r3 = fa::mac_with_carry(t3, k, P::MODULUS.0[3], &mut carry);
let _ = fa::adc(&mut t4, 0, carry);
let r4 = t4;
(r1, r2, r3, r4)
});
let mut result = Self(BigInteger([u0, u1, u2, u3]), PhantomData);
result.reduce();
result
}
#[inline]
fn double(&self) -> Self {
let mut temp = *self;
temp.double_in_place();
temp
}
#[inline]
fn double_in_place(&mut self) {
self.0.mul2();
self.reduce();
}
#[inline]
fn characteristic<'a>() -> &'a [u64] {
P::MODULUS.as_ref()
}
#[inline]
fn square(&self) -> Self {
let mut temp = *self;
temp.square_in_place();
temp
}
#[inline]
fn square_in_place(&mut self) -> &mut Self {
let mut carry = 0;
let r1 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[1], &mut carry);
let r2 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[2], &mut carry);
let r3 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[3], &mut carry);
let r4 = carry;
let mut carry = 0;
let r3 = fa::mac_with_carry(r3, (self.0).0[1], (self.0).0[2], &mut carry);
let r4 = fa::mac_with_carry(r4, (self.0).0[1], (self.0).0[3], &mut carry);
let r5 = carry;
let mut carry = 0;
let r5 = fa::mac_with_carry(r5, (self.0).0[2], (self.0).0[3], &mut carry);
let r6 = carry;
let mut r7 = r6 >> 63;
let r6 = (r6 << 1) | (r5 >> 63);
let mut r5 = (r5 << 1) | (r4 >> 63);
let r4 = (r4 << 1) | (r3 >> 63);
let mut r3 = (r3 << 1) | (r2 >> 63);
let r2 = (r2 << 1) | (r1 >> 63);
let mut r1 = r1 << 1;
let mut carry = 0;
let r0 = fa::mac_with_carry(0, (self.0).0[0], (self.0).0[0], &mut carry);
carry = fa::adc(&mut r1, 0, carry);
let r2 = fa::mac_with_carry(r2, (self.0).0[1], (self.0).0[1], &mut carry);
carry = fa::adc(&mut r3, 0, carry);
let r4 = fa::mac_with_carry(r4, (self.0).0[2], (self.0).0[2], &mut carry);
carry = fa::adc(&mut r5, 0, carry);
let r6 = fa::mac_with_carry(r6, (self.0).0[3], (self.0).0[3], &mut carry);
fa::adc(&mut r7, 0, carry);
self.mont_reduce(r0, r1, r2, r3, r4, r5, r6, r7);
self
}
#[inline]
fn inverse(&self) -> Option<Self> {
if self.is_zero() {
None
} else {
let one = BigInteger::from(1);
let mut u = self.0;
let mut v = P::MODULUS;
let mut b = Self(P::R2, PhantomData); let mut c = Self::zero();
while u != one && v != one {
while u.is_even() {
u.div2();
if b.0.is_even() {
b.0.div2();
} else {
b.0.add_nocarry(&P::MODULUS);
b.0.div2();
}
}
while v.is_even() {
v.div2();
if c.0.is_even() {
c.0.div2();
} else {
c.0.add_nocarry(&P::MODULUS);
c.0.div2();
}
}
if v < u {
u.sub_noborrow(&v);
b.sub_assign(&c);
} else {
v.sub_noborrow(&u);
c.sub_assign(&b);
}
}
if u == one { Some(b) } else { Some(c) }
}
}
fn inverse_in_place(&mut self) -> Option<&mut Self> {
if let Some(inverse) = self.inverse() {
*self = inverse;
Some(self)
} else {
None
}
}
#[inline]
fn frobenius_map(&mut self, _: usize) {
}
}
impl<P: Fp256Parameters> PrimeField for Fp256<P> {
type BigInteger = BigInteger;
type Parameters = P;
#[inline]
fn from_bigint(r: BigInteger) -> Option<Self> {
let mut r = Fp256(r, PhantomData);
if r.is_zero() {
Some(r)
} else if r.is_valid() {
r *= &Fp256(P::R2, PhantomData);
Some(r)
} else {
None
}
}
#[inline]
fn to_bigint(&self) -> BigInteger {
let mut tmp = self.0;
let mut r = tmp.0;
let k = r[0].wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r[0], k, P::MODULUS.0[0], &mut carry);
r[1] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry);
r[2] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry);
r[3] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry);
r[0] = carry;
let k = r[1].wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r[1], k, P::MODULUS.0[0], &mut carry);
r[2] = fa::mac_with_carry(r[2], k, P::MODULUS.0[1], &mut carry);
r[3] = fa::mac_with_carry(r[3], k, P::MODULUS.0[2], &mut carry);
r[0] = fa::mac_with_carry(r[0], k, P::MODULUS.0[3], &mut carry);
r[1] = carry;
let k = r[2].wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r[2], k, P::MODULUS.0[0], &mut carry);
r[3] = fa::mac_with_carry(r[3], k, P::MODULUS.0[1], &mut carry);
r[0] = fa::mac_with_carry(r[0], k, P::MODULUS.0[2], &mut carry);
r[1] = fa::mac_with_carry(r[1], k, P::MODULUS.0[3], &mut carry);
r[2] = carry;
let k = r[3].wrapping_mul(P::INV);
let mut carry = 0;
fa::mac_with_carry(r[3], k, P::MODULUS.0[0], &mut carry);
r[0] = fa::mac_with_carry(r[0], k, P::MODULUS.0[1], &mut carry);
r[1] = fa::mac_with_carry(r[1], k, P::MODULUS.0[2], &mut carry);
r[2] = fa::mac_with_carry(r[2], k, P::MODULUS.0[3], &mut carry);
r[3] = carry;
tmp.0 = r;
tmp
}
#[inline]
fn decompose(
&self,
q1: &[u64; 4],
q2: &[u64; 4],
b1: Self,
b2: Self,
r128: Self,
half_r: &[u64; 8],
) -> (Self, Self, bool, bool) {
let mul_short = |a: &[u64; 4], b: &[u64; 4]| -> [u64; 8] {
let mut carry = 0;
let r0 = fa::mac_with_carry(0, a[0], b[0], &mut carry);
let r1 = fa::mac_with_carry(0, a[0], b[1], &mut carry);
let r2 = fa::mac_with_carry(0, a[0], b[2], &mut carry);
let r3 = carry;
let mut carry = 0;
let r1 = fa::mac_with_carry(r1, a[1], b[0], &mut carry);
let r2 = fa::mac_with_carry(r2, a[1], b[1], &mut carry);
let r3 = fa::mac_with_carry(r3, a[1], b[2], &mut carry);
let r4 = carry;
let mut carry = 0;
let r2 = fa::mac_with_carry(r2, a[2], b[0], &mut carry);
let r3 = fa::mac_with_carry(r3, a[2], b[1], &mut carry);
let r4 = fa::mac_with_carry(r4, a[2], b[2], &mut carry);
let r5 = carry;
let mut carry = 0;
let r3 = fa::mac_with_carry(r3, a[3], b[0], &mut carry);
let r4 = fa::mac_with_carry(r4, a[3], b[1], &mut carry);
let r5 = fa::mac_with_carry(r5, a[3], b[2], &mut carry);
let r6 = carry;
[r0, r1, r2, r3, r4, r5, r6, 0]
};
let round = |a: &mut [u64; 8]| -> Self {
let mut carry = 0;
carry = fa::adc(&mut a[0], half_r[0], carry);
carry = fa::adc(&mut a[1], half_r[1], carry);
carry = fa::adc(&mut a[2], half_r[2], carry);
carry = fa::adc(&mut a[3], half_r[3], carry);
carry = fa::adc(&mut a[4], half_r[4], carry);
carry = fa::adc(&mut a[5], half_r[5], carry);
carry = fa::adc(&mut a[6], half_r[6], carry);
_ = fa::adc(&mut a[7], half_r[7], carry);
Self::from_bigint(BigInteger([a[4], a[5], a[6], a[7]])).unwrap()
};
let alpha = |x: &Self, q: &[u64; 4]| -> Self {
let mut a = mul_short(&x.to_bigint().0, q);
round(&mut a)
};
let alpha1 = alpha(self, q1);
let alpha2 = alpha(self, q2);
let z1 = alpha1 * b1;
let z2 = alpha2 * b2;
let mut k1 = *self - z1 - alpha2;
let mut k2 = z2 - alpha1;
let mut k1_neg = false;
let mut k2_neg = false;
if k1 > r128 {
k1 = -k1;
k1_neg = true;
}
if k2 > r128 {
k2 = -k2;
k2_neg = true;
}
(k1, k2, k1_neg, k2_neg)
}
}
impl<P: Fp256Parameters> FftField for Fp256<P> {
type FftParameters = P;
#[inline]
fn two_adic_root_of_unity() -> Self {
Self(P::TWO_ADIC_ROOT_OF_UNITY, PhantomData)
}
#[inline]
fn large_subgroup_root_of_unity() -> Option<Self> {
Some(Self(P::LARGE_SUBGROUP_ROOT_OF_UNITY?, PhantomData))
}
#[inline]
fn multiplicative_generator() -> Self {
Self(P::GENERATOR, PhantomData)
}
}
impl<P: Fp256Parameters> SquareRootField for Fp256<P> {
#[inline]
fn legendre(&self) -> LegendreSymbol {
use crate::LegendreSymbol::*;
let mut s = self.pow(P::MODULUS_MINUS_ONE_DIV_TWO);
s.reduce();
if s.is_zero() {
Zero
} else if s.is_one() {
QuadraticResidue
} else {
QuadraticNonResidue
}
}
#[inline]
fn sqrt(&self) -> Option<Self> {
sqrt_impl!(Self, P, self)
}
fn sqrt_in_place(&mut self) -> Option<&mut Self> {
(*self).sqrt().map(|sqrt| {
*self = sqrt;
self
})
}
}
impl<P: Fp256Parameters> Ord for Fp256<P> {
#[inline(always)]
fn cmp(&self, other: &Self) -> Ordering {
self.to_bigint().cmp(&other.to_bigint())
}
}
impl<P: Fp256Parameters> PartialOrd for Fp256<P> {
#[inline(always)]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<P: Fp256Parameters + PoseidonDefaultParameters> PoseidonDefaultField for Fp256<P> {}
impl_primefield_from_int!(Fp256, u128, Fp256Parameters);
impl_primefield_from_int!(Fp256, u64, Fp256Parameters);
impl_primefield_from_int!(Fp256, u32, Fp256Parameters);
impl_primefield_from_int!(Fp256, u16, Fp256Parameters);
impl_primefield_from_int!(Fp256, u8, Fp256Parameters);
impl_primefield_standard_sample!(Fp256, Fp256Parameters);
impl_add_sub_from_field_ref!(Fp256, Fp256Parameters);
impl_mul_div_from_field_ref!(Fp256, Fp256Parameters);
impl<P: Fp256Parameters> ToBits for Fp256<P> {
fn write_bits_le(&self, vec: &mut Vec<bool>) {
let initial_len = vec.len();
self.to_bigint().write_bits_le(vec);
vec.truncate(initial_len + P::MODULUS_BITS as usize);
}
fn write_bits_be(&self, vec: &mut Vec<bool>) {
let initial_len = vec.len();
self.write_bits_le(vec);
vec[initial_len..].reverse();
}
fn num_bits() -> Option<usize> {
Some(256)
}
}
impl<P: Fp256Parameters> ToBytes for Fp256<P> {
#[inline]
fn write_le<W: Write>(&self, writer: W) -> IoResult<()> {
self.to_bigint().write_le(writer)
}
}
impl<P: Fp256Parameters> FromBytes for Fp256<P> {
#[inline]
fn read_le<R: Read>(reader: R) -> IoResult<Self> {
BigInteger::read_le(reader).and_then(|b| match Self::from_bigint(b) {
Some(f) => Ok(f),
None => Err(FieldError::InvalidFieldElement.into()),
})
}
}
impl<P: Fp256Parameters> FromStr for Fp256<P> {
type Err = FieldError;
fn from_str(s: &str) -> Result<Self, Self::Err> {
if s.is_empty() {
return Err(FieldError::ParsingEmptyString);
}
if s == "0" {
return Ok(Self::zero());
}
let mut res = Self::zero();
let ten =
Self::from_bigint(<Self as PrimeField>::BigInteger::from(10)).ok_or(FieldError::InvalidFieldElement)?;
let mut first_digit = true;
for c in s.chars() {
match c.to_digit(10) {
Some(c) => {
if first_digit {
if c == 0 {
return Err(FieldError::InvalidString);
}
first_digit = false;
}
res.mul_assign(&ten);
res.add_assign(
&Self::from_bigint(<Self as PrimeField>::BigInteger::from(u64::from(c)))
.ok_or(FieldError::InvalidFieldElement)?,
);
}
None => return Err(FieldError::ParsingNonDigitCharacter),
}
}
if !res.is_valid() { Err(FieldError::InvalidFieldElement) } else { Ok(res) }
}
}
impl<P: Fp256Parameters> Debug for Fp256<P> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "{}", self.to_bigint())
}
}
impl<P: Fp256Parameters> Display for Fp256<P> {
#[inline]
fn fmt(&self, f: &mut Formatter<'_>) -> FmtResult {
write!(f, "{}", self.to_bigint())
}
}
impl<P: Fp256Parameters> Neg for Fp256<P> {
type Output = Self;
#[inline]
#[must_use]
fn neg(self) -> Self {
if !self.is_zero() {
let mut tmp = P::MODULUS;
tmp.sub_noborrow(&self.0);
Self(tmp, PhantomData)
} else {
self
}
}
}
impl<'a, P: Fp256Parameters> Add<&'a Fp256<P>> for Fp256<P> {
type Output = Self;
#[inline]
fn add(self, other: &Self) -> Self {
let mut result = self;
result.add_assign(other);
result
}
}
impl<'a, P: Fp256Parameters> Sub<&'a Fp256<P>> for Fp256<P> {
type Output = Self;
#[inline]
fn sub(self, other: &Self) -> Self {
let mut result = self;
result.sub_assign(other);
result
}
}
impl<'a, P: Fp256Parameters> Mul<&'a Fp256<P>> for Fp256<P> {
type Output = Self;
#[inline]
fn mul(self, other: &Self) -> Self {
let mut result = self;
result.mul_assign(other);
result
}
}
impl<'a, P: Fp256Parameters> Div<&'a Fp256<P>> for Fp256<P> {
type Output = Self;
#[inline]
fn div(self, other: &Self) -> Self {
let mut result = self;
result.mul_assign(&other.inverse().unwrap());
result
}
}
impl<'a, P: Fp256Parameters> AddAssign<&'a Self> for Fp256<P> {
#[inline]
fn add_assign(&mut self, other: &Self) {
self.0.add_nocarry(&other.0);
self.reduce();
}
}
impl<'a, P: Fp256Parameters> SubAssign<&'a Self> for Fp256<P> {
#[inline]
fn sub_assign(&mut self, other: &Self) {
if other.0 > self.0 {
self.0.add_nocarry(&P::MODULUS);
}
self.0.sub_noborrow(&other.0);
}
}
impl<'a, P: Fp256Parameters> MulAssign<&'a Self> for Fp256<P> {
#[inline]
fn mul_assign(&mut self, other: &Self) {
let mut r = [0u64; 4];
let mut carry1 = 0u64;
let mut carry2 = 0u64;
r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[0], &mut carry1);
let k = r[0].wrapping_mul(P::INV);
fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[0], &mut carry1);
r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);
r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[0], &mut carry1);
r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);
r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[0], &mut carry1);
r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
r[3] = carry1 + carry2;
r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[1], &mut carry1);
let k = r[0].wrapping_mul(P::INV);
fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[1], &mut carry1);
r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);
r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[1], &mut carry1);
r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);
r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[1], &mut carry1);
r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
r[3] = carry1 + carry2;
r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[2], &mut carry1);
let k = r[0].wrapping_mul(P::INV);
fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[2], &mut carry1);
r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);
r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[2], &mut carry1);
r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);
r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[2], &mut carry1);
r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
r[3] = carry1 + carry2;
r[0] = fa::mac(r[0], (self.0).0[0], (other.0).0[3], &mut carry1);
let k = r[0].wrapping_mul(P::INV);
fa::mac_discard(r[0], k, P::MODULUS.0[0], &mut carry2);
r[1] = fa::mac_with_carry(r[1], (self.0).0[1], (other.0).0[3], &mut carry1);
r[0] = fa::mac_with_carry(r[1], k, P::MODULUS.0[1], &mut carry2);
r[2] = fa::mac_with_carry(r[2], (self.0).0[2], (other.0).0[3], &mut carry1);
r[1] = fa::mac_with_carry(r[2], k, P::MODULUS.0[2], &mut carry2);
r[3] = fa::mac_with_carry(r[3], (self.0).0[3], (other.0).0[3], &mut carry1);
r[2] = fa::mac_with_carry(r[3], k, P::MODULUS.0[3], &mut carry2);
r[3] = carry1 + carry2;
(self.0).0 = r;
self.reduce();
}
}
impl<'a, P: Fp256Parameters> DivAssign<&'a Self> for Fp256<P> {
#[inline]
fn div_assign(&mut self, other: &Self) {
self.mul_assign(&other.inverse().unwrap());
}
}