1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![allow(dead_code)]

use crate::{FieldParameters, PrimeField};
use snarkvm_utilities::{vec::Vec, FromBits};

use anyhow::{bail, Result};

pub struct PoseidonGrainLFSR {
    pub field_size_in_bits: u64,
    pub state: [bool; 80],
    pub head: usize,
}

impl PoseidonGrainLFSR {
    pub fn new(
        is_sbox_an_inverse: bool,
        field_size_in_bits: u64,
        state_len: u64,
        num_full_rounds: u64,
        num_partial_rounds: u64,
    ) -> Self {
        let mut state = [false; 80];

        // b0, b1 describes the field
        state[1] = true;

        // b2, ..., b5 describes the S-BOX
        state[5] = is_sbox_an_inverse;

        // b6, ..., b17 are the binary representation of n (prime_num_bits)
        {
            let mut cur = field_size_in_bits;
            for i in (6..=17).rev() {
                state[i] = cur & 1 == 1;
                cur >>= 1;
            }
        }

        // b18, ..., b29 are the binary representation of t (state_len, rate + capacity)
        {
            let mut cur = state_len;
            for i in (18..=29).rev() {
                state[i] = cur & 1 == 1;
                cur >>= 1;
            }
        }

        // b30, ..., b39 are the binary representation of R_F (the number of full rounds)
        {
            let mut cur = num_full_rounds;
            for i in (30..=39).rev() {
                state[i] = cur & 1 == 1;
                cur >>= 1;
            }
        }

        // b40, ..., b49 are the binary representation of R_P (the number of partial rounds)
        {
            let mut cur = num_partial_rounds;
            for i in (40..=49).rev() {
                state[i] = cur & 1 == 1;
                cur >>= 1;
            }
        }

        // b50, ..., b79 are set to 1
        state[50..=79].copy_from_slice(&[true; 30]);

        // Initialize.
        let mut res = Self { field_size_in_bits, state, head: 0 };
        for _ in 0..160 {
            res.next_bit();
        }
        res
    }

    pub fn get_field_elements_rejection_sampling<F: PrimeField>(&mut self, num_elements: usize) -> Result<Vec<F>> {
        // Ensure the number of bits matches the modulus.
        if self.field_size_in_bits != F::Parameters::MODULUS_BITS as u64 {
            bail!("The number of bits in the field must match the modulus");
        }

        let mut output = Vec::with_capacity(num_elements);
        let mut bits = Vec::with_capacity(self.field_size_in_bits as usize);
        for _ in 0..num_elements {
            // Perform rejection sampling.
            loop {
                // Obtain `n` bits and make it most-significant-bit first.
                bits.extend(self.get_bits(self.field_size_in_bits as usize));
                bits.reverse();
                // Construct the number.
                let bigint = F::BigInteger::from_bits_le(&bits)?;
                bits.clear();
                // Ensure the number is in the field.
                if let Some(element) = F::from_bigint(bigint) {
                    output.push(element);
                    break;
                }
            }
        }
        Ok(output)
    }

    pub fn get_field_elements_mod_p<F: PrimeField>(&mut self, num_elems: usize) -> Result<Vec<F>> {
        // Ensure the number of bits matches the modulus.
        let num_bits = self.field_size_in_bits;
        if num_bits != F::Parameters::MODULUS_BITS as u64 {
            bail!("The number of bits in the field must match the modulus");
        }

        // Prepare reusable vectors for the intermediate bits and bytes.
        let mut bits = Vec::with_capacity(num_bits as usize);
        let mut bytes = Vec::with_capacity((num_bits as usize + 7) / 8);

        let mut output = Vec::with_capacity(num_elems);
        for _ in 0..num_elems {
            // Obtain `n` bits and make it most-significant-bit first.
            let bits_iter = self.get_bits(num_bits as usize);
            for bit in bits_iter {
                bits.push(bit);
            }
            bits.reverse();

            for byte in bits
                .chunks(8)
                .map(|chunk| {
                    let mut sum = chunk[0] as u8;
                    let mut cur = 1;
                    for i in chunk.iter().skip(1) {
                        cur *= 2;
                        sum += cur * (*i as u8);
                    }
                    sum
                })
                .rev()
            {
                bytes.push(byte);
            }

            output.push(F::from_bytes_be_mod_order(&bytes));

            // Clear the vectors of bits and bytes so they can be reused
            // in the next iteration.
            bits.clear();
            bytes.clear();
        }
        Ok(output)
    }
}

impl PoseidonGrainLFSR {
    #[inline]
    fn get_bits(&mut self, num_bits: usize) -> LFSRIter<'_> {
        LFSRIter { lfsr: self, num_bits, current_bit: 0 }
    }

    #[inline]
    fn next_bit(&mut self) -> bool {
        let next_bit = self.state[(self.head + 62) % 80]
            ^ self.state[(self.head + 51) % 80]
            ^ self.state[(self.head + 38) % 80]
            ^ self.state[(self.head + 23) % 80]
            ^ self.state[(self.head + 13) % 80]
            ^ self.state[self.head];
        self.state[self.head] = next_bit;
        self.head += 1;
        self.head %= 80;

        next_bit
    }
}

pub struct LFSRIter<'a> {
    lfsr: &'a mut PoseidonGrainLFSR,
    num_bits: usize,
    current_bit: usize,
}

impl<'a> Iterator for LFSRIter<'a> {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        if self.current_bit < self.num_bits {
            // Obtain the first bit
            let mut new_bit = self.lfsr.next_bit();

            // Loop until the first bit is true
            while !new_bit {
                // Discard the second bit
                let _ = self.lfsr.next_bit();
                // Obtain another first bit
                new_bit = self.lfsr.next_bit();
            }
            self.current_bit += 1;

            // Obtain the second bit
            Some(self.lfsr.next_bit())
        } else {
            None
        }
    }
}

impl<'a> ExactSizeIterator for LFSRIter<'a> {
    fn len(&self) -> usize {
        self.num_bits
    }
}