1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod bytes;
mod serialize;
mod string;
use super::*;
/// The prover solution for the coinbase puzzle from a prover.
#[derive(Copy, Clone, Eq, PartialEq, Hash)]
pub struct ProverSolution<N: Network> {
/// The core data of the prover solution.
partial_solution: PartialSolution<N>,
/// The proof for the solution.
proof: PuzzleProof<N>,
}
impl<N: Network> ProverSolution<N> {
/// Initializes a new instance of the prover solution.
pub const fn new(partial_solution: PartialSolution<N>, proof: PuzzleProof<N>) -> Self {
Self { partial_solution, proof }
}
/// Returns `true` if the prover solution is valid.
pub fn verify(
&self,
verifying_key: &CoinbaseVerifyingKey<N>,
epoch_challenge: &EpochChallenge<N>,
proof_target: u64,
) -> Result<bool> {
// Ensure the proof is non-hiding.
if self.proof.is_hiding() {
return Ok(false);
}
// Ensure that the prover solution is greater than the proof target.
if self.to_target()? < proof_target {
bail!("Prover puzzle does not meet the proof target requirements.")
}
// Compute the prover polynomial.
let prover_polynomial = self.partial_solution.to_prover_polynomial(epoch_challenge)?;
// Compute the challenge point.
let challenge_point = hash_commitment(&self.commitment())?;
// Evaluate the epoch and prover polynomials at the challenge point.
let epoch_evaluation = epoch_challenge.epoch_polynomial().evaluate(challenge_point);
let prover_evaluation = prover_polynomial.evaluate(challenge_point);
// Compute the claimed value by multiplying the evaluations.
let claimed_value = epoch_evaluation * prover_evaluation;
// Check the KZG proof.
Ok(KZG10::check(verifying_key, &self.commitment(), challenge_point, claimed_value, self.proof())?)
}
/// Returns the address of the prover.
pub const fn address(&self) -> Address<N> {
self.partial_solution.address()
}
/// Returns the nonce for the solution.
pub const fn nonce(&self) -> u64 {
self.partial_solution.nonce()
}
/// Returns the commitment for the solution.
pub const fn commitment(&self) -> PuzzleCommitment<N> {
self.partial_solution.commitment()
}
/// Returns the proof for the solution.
pub const fn proof(&self) -> &PuzzleProof<N> {
&self.proof
}
/// Returns the prover polynomial.
pub fn to_prover_polynomial(
&self,
epoch_challenge: &EpochChallenge<N>,
) -> Result<DensePolynomial<<N::PairingCurve as PairingEngine>::Fr>> {
self.partial_solution.to_prover_polynomial(epoch_challenge)
}
/// Returns the target of the solution.
pub fn to_target(&self) -> Result<u64> {
self.partial_solution.to_target()
}
}