1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod bytes;
mod serialize;
mod string;
use super::*;
use indexmap::IndexMap;
/// The coinbase puzzle solution is composed of individual prover solutions.
#[derive(Clone, Eq, PartialEq)]
pub struct CoinbaseSolution<N: Network> {
/// The prover solutions for the coinbase puzzle.
solutions: IndexMap<PuzzleCommitment<N>, ProverSolution<N>>,
}
impl<N: Network> CoinbaseSolution<N> {
/// Initializes a new instance of the solutions.
pub fn new(solutions: Vec<ProverSolution<N>>) -> Result<Self> {
// Ensure the solutions are not empty.
ensure!(!solutions.is_empty(), "There are no solutions to verify for the coinbase puzzle");
// Ensure the number of partial solutions does not exceed `MAX_PROVER_SOLUTIONS`.
if solutions.len() > N::MAX_SOLUTIONS {
bail!(
"The solutions exceed the allowed number of partial solutions. ({} > {})",
solutions.len(),
N::MAX_SOLUTIONS
);
}
// Ensure the puzzle commitments are unique.
if has_duplicates(solutions.iter().map(|s| s.commitment())) {
bail!("The solutions contain duplicate puzzle commitments");
}
// Return the solutions.
Ok(Self { solutions: solutions.into_iter().map(|solution| (solution.commitment(), solution)).collect() })
}
/// Returns the puzzle commitments.
pub fn puzzle_commitments(&self) -> impl '_ + Iterator<Item = &PuzzleCommitment<N>> {
self.solutions.keys()
}
/// Returns the number of solutions.
pub fn len(&self) -> usize {
self.solutions.len()
}
/// Returns `true` if there are no solutions.
pub fn is_empty(&self) -> bool {
self.solutions.is_empty()
}
/// Returns the prover solution for the puzzle commitment.
pub fn get_solution(&self, puzzle_commitment: &PuzzleCommitment<N>) -> Option<&ProverSolution<N>> {
self.solutions.get(puzzle_commitment)
}
/// Returns the combined sum of the prover solutions.
pub fn to_combined_proof_target(&self) -> Result<u128> {
// Compute the combined proof target as a u128.
self.solutions.values().try_fold(0u128, |combined, solution| {
combined.checked_add(solution.to_target()? as u128).ok_or_else(|| anyhow!("Combined target overflowed"))
})
}
/// Returns the accumulator challenge point.
pub fn to_accumulator_point(&self) -> Result<Field<N>> {
let mut challenge_points = hash_commitments(self.solutions.keys().map(|pcm| **pcm))?;
ensure!(challenge_points.len() == self.solutions.len() + 1, "Invalid number of challenge points");
// Pop the last challenge point as the accumulator challenge point.
match challenge_points.pop() {
Some(point) => Ok(Field::new(point)),
None => bail!("Missing the accumulator challenge point"),
}
}
}
impl<N: Network> Deref for CoinbaseSolution<N> {
type Target = IndexMap<PuzzleCommitment<N>, ProverSolution<N>>;
fn deref(&self) -> &Self::Target {
&self.solutions
}
}