1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod bytes;
mod serialize;
mod string;

use super::*;

use indexmap::IndexMap;

/// The coinbase puzzle solution is composed of individual prover solutions.
#[derive(Clone, Eq, PartialEq)]
pub struct CoinbaseSolution<N: Network> {
    /// The prover solutions for the coinbase puzzle.
    solutions: IndexMap<PuzzleCommitment<N>, ProverSolution<N>>,
}

impl<N: Network> CoinbaseSolution<N> {
    /// Initializes a new instance of the solutions.
    pub fn new(solutions: Vec<ProverSolution<N>>) -> Result<Self> {
        // Ensure the solutions are not empty.
        ensure!(!solutions.is_empty(), "There are no solutions to verify for the coinbase puzzle");
        // Ensure the number of partial solutions does not exceed `MAX_PROVER_SOLUTIONS`.
        if solutions.len() > N::MAX_SOLUTIONS {
            bail!(
                "The solutions exceed the allowed number of partial solutions. ({} > {})",
                solutions.len(),
                N::MAX_SOLUTIONS
            );
        }
        // Ensure the puzzle commitments are unique.
        if has_duplicates(solutions.iter().map(|s| s.commitment())) {
            bail!("The solutions contain duplicate puzzle commitments");
        }
        // Return the solutions.
        Ok(Self { solutions: solutions.into_iter().map(|solution| (solution.commitment(), solution)).collect() })
    }

    /// Returns the puzzle commitments.
    pub fn puzzle_commitments(&self) -> impl '_ + Iterator<Item = &PuzzleCommitment<N>> {
        self.solutions.keys()
    }

    /// Returns the number of solutions.
    pub fn len(&self) -> usize {
        self.solutions.len()
    }

    /// Returns `true` if there are no solutions.
    pub fn is_empty(&self) -> bool {
        self.solutions.is_empty()
    }

    /// Returns the prover solution for the puzzle commitment.
    pub fn get_solution(&self, puzzle_commitment: &PuzzleCommitment<N>) -> Option<&ProverSolution<N>> {
        self.solutions.get(puzzle_commitment)
    }

    /// Returns the combined sum of the prover solutions.
    pub fn to_combined_proof_target(&self) -> Result<u128> {
        // Compute the combined proof target as a u128.
        self.solutions.values().try_fold(0u128, |combined, solution| {
            combined.checked_add(solution.to_target()? as u128).ok_or_else(|| anyhow!("Combined target overflowed"))
        })
    }

    /// Returns the accumulator challenge point.
    pub fn to_accumulator_point(&self) -> Result<Field<N>> {
        let mut challenge_points = hash_commitments(self.solutions.keys().map(|pcm| **pcm))?;
        ensure!(challenge_points.len() == self.solutions.len() + 1, "Invalid number of challenge points");

        // Pop the last challenge point as the accumulator challenge point.
        match challenge_points.pop() {
            Some(point) => Ok(Field::new(point)),
            None => bail!("Missing the accumulator challenge point"),
        }
    }
}

impl<N: Network> Deref for CoinbaseSolution<N> {
    type Target = IndexMap<PuzzleCommitment<N>, ProverSolution<N>>;

    fn deref(&self) -> &Self::Target {
        &self.solutions
    }
}