snarkvm_ledger_puzzle/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#![forbid(unsafe_code)]
#![allow(clippy::too_many_arguments)]
#![warn(clippy::cast_possible_truncation)]

mod partial_solution;
pub use partial_solution::*;

mod solution;
pub use solution::*;

mod solution_id;
pub use solution_id::*;

mod solutions;
pub use solutions::*;

use console::{
    account::Address,
    algorithms::Sha3_256,
    collections::kary_merkle_tree::KaryMerkleTree,
    prelude::{
        FromBits,
        Network,
        Result,
        anyhow,
        bail,
        cfg_into_iter,
        cfg_iter,
        cfg_keys,
        cfg_values,
        ensure,
        has_duplicates,
    },
    types::U64,
};

use aleo_std::prelude::*;
use core::num::NonZeroUsize;
use indexmap::IndexMap;
use lru::LruCache;
use parking_lot::RwLock;
use rand::SeedableRng;
use rand_chacha::ChaChaRng;
use std::sync::Arc;

#[cfg(not(feature = "serial"))]
use rayon::prelude::*;

/// The arity of the Merkle tree.
const ARITY: u8 = 8;
/// The size of the cache.
const CACHE_SIZE: usize = 1 << 10;

/// The Merkle tree for the puzzle.
type MerkleTree = KaryMerkleTree<Sha3_256, Sha3_256, 9, { ARITY }>;

/// The puzzle trait.
pub trait PuzzleTrait<N: Network>: Send + Sync {
    /// Initializes a new instance of the puzzle.
    fn new() -> Self
    where
        Self: Sized;

    /// Returns the leaves for the puzzle, given the epoch hash and seeded RNG.
    fn to_leaves(&self, epoch_hash: N::BlockHash, rng: &mut ChaChaRng) -> Result<Vec<Vec<bool>>>;

    /// Returns the batches of leaves for the puzzle, given the epoch hash and seeded RNGs.
    fn to_all_leaves(&self, epoch_hash: N::BlockHash, rngs: Vec<ChaChaRng>) -> Result<Vec<Vec<Vec<bool>>>>;
}

#[derive(Clone)]
pub struct Puzzle<N: Network> {
    /// The core puzzle.
    inner: Arc<dyn PuzzleTrait<N>>,
    /// The LRU cache of solution IDs to proof targets.
    proof_target_cache: Arc<RwLock<LruCache<SolutionID<N>, u64>>>,
}

impl<N: Network> Puzzle<N> {
    /// Initializes a new puzzle instance.
    pub fn new<P: PuzzleTrait<N> + 'static>() -> Self {
        Self {
            inner: Arc::new(P::new()),
            proof_target_cache: Arc::new(RwLock::new(LruCache::new(NonZeroUsize::new(CACHE_SIZE).unwrap()))),
        }
    }

    /// Returns the Merkle leaves for the puzzle, given the solution.
    pub fn get_leaves(&self, solution: &PartialSolution<N>) -> Result<Vec<Vec<bool>>> {
        // Initialize a seeded random number generator.
        let mut rng = ChaChaRng::seed_from_u64(*solution.id());
        // Output the leaves.
        self.inner.to_leaves(solution.epoch_hash(), &mut rng)
    }

    /// Returns each of the Merkle leaves for the puzzle, given the solutions.
    pub fn get_all_leaves(&self, solutions: &PuzzleSolutions<N>) -> Result<Vec<Vec<Vec<bool>>>> {
        // Ensure all of the solutions are for the same epoch.
        ensure!(
            cfg_values!(solutions).all(|solution| solution.epoch_hash() == solutions[0].epoch_hash()),
            "The solutions are for different epochs"
        );
        // Construct the RNGs.
        let rngs = cfg_keys!(solutions).map(|solution_id| ChaChaRng::seed_from_u64(**solution_id)).collect::<Vec<_>>();
        // Output the leaves.
        self.inner.to_all_leaves(solutions[0].epoch_hash(), rngs)
    }

    /// Returns the proof target given the solution.
    pub fn get_proof_target(&self, solution: &Solution<N>) -> Result<u64> {
        // Calculate the proof target.
        let proof_target = self.get_proof_target_unchecked(solution)?;
        // Ensure the proof target matches the expected proof target.
        ensure!(solution.target() == proof_target, "The proof target does not match the expected proof target");
        // Return the proof target.
        Ok(proof_target)
    }

    /// Returns the proof target given the solution.
    ///
    /// Note: This method does **not** check the proof target against the expected proof target.
    pub fn get_proof_target_unchecked(&self, solution: &Solution<N>) -> Result<u64> {
        // Calculate the proof target.
        self.get_proof_target_from_partial_solution(solution.partial_solution())
    }

    /// Returns the proof target given the partial solution.
    pub fn get_proof_target_from_partial_solution(&self, partial_solution: &PartialSolution<N>) -> Result<u64> {
        // If the proof target is in the cache, then return it.
        if let Some(proof_target) = self.proof_target_cache.write().get(&partial_solution.id()) {
            return Ok(*proof_target);
        }

        // Construct the leaves of the Merkle tree.
        let leaves = self.get_leaves(partial_solution)?;
        // Get the proof target.
        let proof_target = Self::leaves_to_proof_target(&leaves)?;

        // Insert the proof target into the cache.
        self.proof_target_cache.write().put(partial_solution.id(), proof_target);
        // Return the proof target.
        Ok(proof_target)
    }

    /// Returns the proof targets given the solutions.
    pub fn get_proof_targets(&self, solutions: &PuzzleSolutions<N>) -> Result<Vec<u64>> {
        // Initialize the list of proof targets.
        let mut targets = vec![0u64; solutions.len()];

        // Initialize a list of solutions that need to be computed for the proof target.
        let mut to_compute = Vec::new();
        // Iterate over the solutions.
        for (i, (id, solution)) in solutions.iter().enumerate() {
            // Check if the proof target is in the cache.
            match self.proof_target_cache.write().get(id) {
                // If the proof target is in the cache, then store it.
                Some(proof_target) => {
                    // Ensure that the proof target matches the expected proof target.
                    ensure!(
                        solution.target() == *proof_target,
                        "The proof target does not match the cached proof target"
                    );
                    targets[i] = *proof_target
                }
                // Otherwise, add it to the list of solutions that need to be computed.
                None => to_compute.push((i, id, *solution)),
            }
        }

        if !to_compute.is_empty() {
            // Construct the solutions object for those that need to be computed.
            let solutions_subset = PuzzleSolutions::new(to_compute.iter().map(|(_, _, solution)| *solution).collect())?;
            // Construct the leaves of the Merkle tree.
            let leaves = self.get_all_leaves(&solutions_subset)?;
            // Construct the Merkle roots and truncate them to a u64.
            let targets_subset = cfg_iter!(leaves)
                .zip(cfg_iter!(solutions_subset))
                .map(|(leaves, (solution_id, solution))| {
                    // Get the proof target.
                    let proof_target = Self::leaves_to_proof_target(leaves)?;
                    // Ensure that the proof target matches the expected proof target.
                    ensure!(
                        solution.target() == proof_target,
                        "The proof target does not match the computed proof target"
                    );
                    // Insert the proof target into the cache.
                    self.proof_target_cache.write().put(*solution_id, proof_target);
                    // Return the proof target.
                    Ok((solution_id, proof_target))
                })
                .collect::<Result<IndexMap<_, _>>>()?;

            // Recombine the proof targets.
            for (i, id, _) in &to_compute {
                targets[*i] = targets_subset[id];
            }
        }

        // Return the proof targets.
        Ok(targets)
    }

    /// Returns the combined proof target of the solutions.
    pub fn get_combined_proof_target(&self, solutions: &PuzzleSolutions<N>) -> Result<u128> {
        self.get_proof_targets(solutions)?.into_iter().try_fold(0u128, |combined, proof_target| {
            combined.checked_add(proof_target as u128).ok_or_else(|| anyhow!("Combined proof target overflowed"))
        })
    }

    /// Returns a solution to the puzzle.
    pub fn prove(
        &self,
        epoch_hash: N::BlockHash,
        address: Address<N>,
        counter: u64,
        minimum_proof_target: Option<u64>,
    ) -> Result<Solution<N>> {
        // Construct the partial solution.
        let partial_solution = PartialSolution::new(epoch_hash, address, counter)?;
        // Compute the proof target.
        let proof_target = self.get_proof_target_from_partial_solution(&partial_solution)?;
        // Check that the minimum proof target is met.
        if let Some(minimum_proof_target) = minimum_proof_target {
            if proof_target < minimum_proof_target {
                bail!("Solution was below the minimum proof target ({proof_target} < {minimum_proof_target})")
            }
        }

        // Construct the solution.
        Ok(Solution::new(partial_solution, proof_target))
    }

    /// Returns `Ok(())` if the solution is valid.
    pub fn check_solution(
        &self,
        solution: &Solution<N>,
        expected_epoch_hash: N::BlockHash,
        expected_proof_target: u64,
    ) -> Result<()> {
        // Ensure the epoch hash matches.
        if solution.epoch_hash() != expected_epoch_hash {
            bail!(
                "Solution does not match the expected epoch hash (found '{}', expected '{expected_epoch_hash}')",
                solution.epoch_hash()
            )
        }
        // Ensure the solution is greater than or equal to the expected proof target.
        let proof_target = self.get_proof_target(solution)?;
        if proof_target < expected_proof_target {
            bail!("Solution does not meet the proof target requirement ({proof_target} < {expected_proof_target})")
        }
        Ok(())
    }

    /// ATTENTION: This function will update the target if the solution target is different from the calculated one.
    /// Returns `Ok(())` if the solution is valid.
    pub fn check_solution_mut(
        &self,
        solution: &mut Solution<N>,
        expected_epoch_hash: N::BlockHash,
        expected_proof_target: u64,
    ) -> Result<()> {
        // Ensure the epoch hash matches.
        if solution.epoch_hash() != expected_epoch_hash {
            bail!(
                "Solution does not match the expected epoch hash (found '{}', expected '{expected_epoch_hash}')",
                solution.epoch_hash()
            )
        }
        // Calculate the proof target of the solution.
        let proof_target = self.get_proof_target_unchecked(solution)?;

        // Set the target with the newly calculated proof target value.
        solution.target = proof_target;

        // Ensure the solution is greater than or equal to the expected proof target.
        if proof_target < expected_proof_target {
            bail!("Solution does not meet the proof target requirement ({proof_target} < {expected_proof_target})")
        }
        Ok(())
    }

    /// Returns `Ok(())` if the solutions are valid.
    pub fn check_solutions(
        &self,
        solutions: &PuzzleSolutions<N>,
        expected_epoch_hash: N::BlockHash,
        expected_proof_target: u64,
    ) -> Result<()> {
        let timer = timer!("Puzzle::verify");

        // Ensure the solutions are not empty.
        ensure!(!solutions.is_empty(), "The solutions are empty");
        // Ensure the number of solutions does not exceed `MAX_SOLUTIONS`.
        if solutions.len() > N::MAX_SOLUTIONS {
            bail!("Exceed the maximum number of solutions ({} > {})", solutions.len(), N::MAX_SOLUTIONS)
        }
        // Ensure the solution IDs are unique.
        if has_duplicates(solutions.solution_ids()) {
            bail!("The solutions contain duplicate solution IDs");
        }
        lap!(timer, "Perform initial checks");

        // Ensure the epoch hash matches.
        cfg_iter!(solutions).try_for_each(|(solution_id, solution)| {
            if solution.epoch_hash() != expected_epoch_hash {
                bail!("Solution '{solution_id}' did not match the expected epoch hash (found '{}', expected '{expected_epoch_hash}')", solution.epoch_hash())
            }
            Ok(())
        })?;
        lap!(timer, "Verify each epoch hash matches");

        // Ensure the solutions meet the proof target requirement.
        cfg_into_iter!(self.get_proof_targets(solutions)?).enumerate().try_for_each(|(i, proof_target)| {
            if proof_target < expected_proof_target {
                bail!(
                    "Solution '{:?}' did not meet the proof target requirement ({proof_target} < {expected_proof_target})",
                    solutions.get_index(i).map(|(id, _)| id)
                )
            }
            Ok(())
        })?;
        finish!(timer, "Verify each solution");
        Ok(())
    }

    /// A helper function that takes leaves of a Merkle tree and returns the proof target.
    fn leaves_to_proof_target(leaves: &[Vec<bool>]) -> Result<u64> {
        // Construct the Merkle tree.
        let merkle_tree = MerkleTree::new(&Sha3_256::default(), &Sha3_256::default(), leaves)?;
        // Retrieve the Merkle tree root.
        let root = merkle_tree.root();
        // Truncate to a u64.
        match *U64::<N>::from_bits_be(&root[0..64])? {
            0 => Ok(u64::MAX),
            value => Ok(u64::MAX / value),
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use console::{
        account::{Address, PrivateKey},
        network::Network,
        prelude::{FromBytes, TestRng, ToBits as TBits, ToBytes, Uniform},
        types::Field,
    };

    use anyhow::Result;
    use core::marker::PhantomData;
    use rand::{CryptoRng, Rng, RngCore, SeedableRng};
    use rand_chacha::ChaChaRng;

    type CurrentNetwork = console::network::MainnetV0;

    const ITERATIONS: u64 = 100;

    pub struct SimplePuzzle<N: Network>(PhantomData<N>);

    impl<N: Network> PuzzleTrait<N> for SimplePuzzle<N> {
        /// Initializes a new instance of the puzzle.
        fn new() -> Self {
            Self(PhantomData)
        }

        /// Returns the leaves for the puzzle, given the epoch hash and seeded RNG.
        fn to_leaves(&self, epoch_hash: N::BlockHash, rng: &mut ChaChaRng) -> Result<Vec<Vec<bool>>> {
            // Sample a random number of leaves.
            let num_leaves = self.num_leaves(epoch_hash)?;
            // Sample random field elements for each of the leaves, and convert them to bits.
            let leaves = (0..num_leaves).map(|_| Field::<N>::rand(rng).to_bits_le()).collect::<Vec<_>>();
            // Return the leaves.
            Ok(leaves)
        }

        /// Returns the batches of leaves for the puzzle, given the epoch hash and seeded RNGs.
        fn to_all_leaves(&self, epoch_hash: N::BlockHash, rngs: Vec<ChaChaRng>) -> Result<Vec<Vec<Vec<bool>>>> {
            // Sample a random number of leaves.
            let num_leaves = self.num_leaves(epoch_hash)?;
            // Initialize the list of leaves.
            let mut leaves = Vec::with_capacity(rngs.len());
            // Construct the epoch inputs.
            for mut rng in rngs {
                // Sample random field elements for each of the leaves, and convert them to bits.
                leaves.push((0..num_leaves).map(|_| Field::<N>::rand(&mut rng).to_bits_le()).collect::<Vec<_>>());
            }
            // Return the leaves.
            Ok(leaves)
        }
    }

    impl<N: Network> SimplePuzzle<N> {
        /// Returns the number of leaves given the epoch hash.
        pub fn num_leaves(&self, epoch_hash: N::BlockHash) -> Result<usize> {
            const MIN_NUMBER_OF_LEAVES: usize = 100;
            const MAX_NUMBER_OF_LEAVES: usize = 200;

            // Prepare the seed.
            let seed = u64::from_bytes_le(&epoch_hash.to_bytes_le()?[0..8])?;
            // Seed a random number generator from the epoch hash.
            let mut epoch_rng = ChaChaRng::seed_from_u64(seed);
            // Sample a random number of leaves.
            Ok(epoch_rng.gen_range(MIN_NUMBER_OF_LEAVES..MAX_NUMBER_OF_LEAVES))
        }
    }

    /// Samples a new puzzle.
    fn sample_puzzle() -> Puzzle<CurrentNetwork> {
        Puzzle::<CurrentNetwork>::new::<SimplePuzzle<CurrentNetwork>>()
    }

    #[test]
    fn test_puzzle() {
        let mut rng = TestRng::default();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        for batch_size in 1..=CurrentNetwork::MAX_SOLUTIONS {
            // Initialize the solutions.
            let solutions = (0..batch_size)
                .map(|_| puzzle.prove(epoch_hash, rng.gen(), rng.gen(), None).unwrap())
                .collect::<Vec<_>>();
            let solutions = PuzzleSolutions::new(solutions).unwrap();

            // Ensure the solutions are valid.
            assert!(puzzle.check_solutions(&solutions, epoch_hash, 0u64).is_ok());

            // Ensure the solutions are invalid.
            let bad_epoch_hash = rng.gen();
            assert!(puzzle.check_solutions(&solutions, bad_epoch_hash, 0u64).is_err());
        }
    }

    #[test]
    fn test_prove_with_minimum_proof_target() {
        let mut rng = TestRng::default();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        for _ in 0..ITERATIONS {
            let private_key = PrivateKey::<CurrentNetwork>::new(&mut rng).unwrap();
            let address = Address::try_from(private_key).unwrap();
            let counter = u64::rand(&mut rng);

            let solution = puzzle.prove(epoch_hash, address, counter, None).unwrap();
            let proof_target = puzzle.get_proof_target(&solution).unwrap();

            // Assert that the operation will pass if the minimum target is low enough.
            assert!(puzzle.prove(epoch_hash, address, counter, Some(proof_target)).is_ok());

            // Assert that the operation will fail if the minimum target is too high.
            assert!(puzzle.prove(epoch_hash, address, counter, Some(proof_target.saturating_add(1))).is_err());

            let solutions = PuzzleSolutions::new(vec![solution]).unwrap();

            // Ensure the solution is valid.
            assert!(puzzle.check_solutions(&solutions, epoch_hash, proof_target).is_ok());

            // Ensure the solution is invalid.
            assert!(puzzle.check_solutions(&solutions, epoch_hash, proof_target.saturating_add(1)).is_err());
        }
    }

    #[test]
    fn test_prove_with_no_minimum_proof_target() {
        let mut rng = rand::thread_rng();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        // Generate inputs.
        let private_key = PrivateKey::<CurrentNetwork>::new(&mut rng).unwrap();
        let address = Address::try_from(private_key).unwrap();

        // Generate a solution.
        let solution = puzzle.prove(epoch_hash, address, rng.gen(), None).unwrap();
        assert!(puzzle.check_solution(&solution, epoch_hash, 0u64).is_ok());

        let solutions = PuzzleSolutions::new(vec![solution]).unwrap();
        assert!(puzzle.check_solutions(&solutions, epoch_hash, 0u64).is_ok());
    }

    #[test]
    fn test_check_solution_with_incorrect_target_fails() {
        let mut rng = rand::thread_rng();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        // Generate inputs.
        let private_key = PrivateKey::<CurrentNetwork>::new(&mut rng).unwrap();
        let address = Address::try_from(private_key).unwrap();

        // Generate a solution.
        let solution = puzzle.prove(epoch_hash, address, rng.gen(), None).unwrap();

        // Generate a solution with an incorrect target.
        let incorrect_solution = Solution::new(*solution.partial_solution(), solution.target().saturating_add(1));

        // Ensure the incorrect solution is invalid.
        assert!(puzzle.check_solution(&incorrect_solution, epoch_hash, 0u64).is_err());

        // Ensure the invalid solution is invalid on a fresh puzzle instance.
        let new_puzzle = sample_puzzle();
        assert!(new_puzzle.check_solution(&incorrect_solution, epoch_hash, 0u64).is_err());

        // Ensure the incorrect solutions are invalid.
        let incorrect_solutions = PuzzleSolutions::new(vec![incorrect_solution]).unwrap();
        assert!(puzzle.check_solutions(&incorrect_solutions, epoch_hash, 0u64).is_err());

        // Ensure the incorrect solutions are invalid on a fresh puzzle instance.
        let new_puzzle = sample_puzzle();
        assert!(new_puzzle.check_solutions(&incorrect_solutions, epoch_hash, 0u64).is_err());
    }

    #[test]
    fn test_check_solutions_with_incorrect_target_fails() {
        let mut rng = TestRng::default();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        for batch_size in 1..=CurrentNetwork::MAX_SOLUTIONS {
            // Initialize the incorrect solutions.
            let incorrect_solutions = (0..batch_size)
                .map(|_| {
                    let solution = puzzle.prove(epoch_hash, rng.gen(), rng.gen(), None).unwrap();
                    Solution::new(*solution.partial_solution(), solution.target().saturating_add(1))
                })
                .collect::<Vec<_>>();
            let incorrect_solutions = PuzzleSolutions::new(incorrect_solutions).unwrap();

            // Ensure the incorrect solutions are invalid.
            assert!(puzzle.check_solutions(&incorrect_solutions, epoch_hash, 0u64).is_err());

            // Ensure the incorrect solutions are invalid on a fresh puzzle instance.
            let new_puzzle = sample_puzzle();
            assert!(new_puzzle.check_solutions(&incorrect_solutions, epoch_hash, 0u64).is_err());
        }
    }

    #[test]
    fn test_check_solutions_with_duplicate_nonces() {
        let mut rng = TestRng::default();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();
        // Initialize an address.
        let address = rng.gen();
        // Initialize a counter.
        let counter = rng.gen();

        for batch_size in 1..=CurrentNetwork::MAX_SOLUTIONS {
            // Initialize the solutions.
            let solutions =
                (0..batch_size).map(|_| puzzle.prove(epoch_hash, address, counter, None).unwrap()).collect::<Vec<_>>();
            // Ensure the solutions are invalid, if the batch size is greater than 1.
            let solutions = match batch_size {
                1 => PuzzleSolutions::new(solutions).unwrap(),
                _ => {
                    assert!(PuzzleSolutions::new(solutions).is_err());
                    continue;
                }
            };
            match batch_size {
                1 => assert!(puzzle.check_solutions(&solutions, epoch_hash, 0u64).is_ok()),
                _ => unreachable!("There are duplicates that should not reach this point in the test"),
            }
        }
    }

    #[test]
    fn test_get_proof_targets_without_cache() {
        let mut rng = TestRng::default();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        for batch_size in 1..=CurrentNetwork::MAX_SOLUTIONS {
            // Initialize a new puzzle.
            let puzzle = sample_puzzle();
            // Initialize the solutions.
            let solutions = (0..batch_size)
                .map(|_| puzzle.prove(epoch_hash, rng.gen(), rng.gen(), None).unwrap())
                .collect::<Vec<_>>();
            let solutions = PuzzleSolutions::new(solutions).unwrap();

            // Reinitialize the puzzle to *clear the cache*.
            let puzzle = sample_puzzle();

            // Compute the proof targets.
            let proof_targets = puzzle.get_proof_targets(&solutions).unwrap();

            // Ensure the proof targets are correct.
            for ((_, solution), proof_target) in solutions.iter().zip(proof_targets) {
                assert_eq!(puzzle.get_proof_target(solution).unwrap(), proof_target);
            }
        }
    }

    #[test]
    fn test_get_proof_targets_with_partial_cache() {
        let mut rng = TestRng::default();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        for batch_size in 1..=CurrentNetwork::MAX_SOLUTIONS {
            // Initialize a new puzzle.
            let puzzle = sample_puzzle();
            // Initialize the solutions.
            let solutions = (0..batch_size)
                .map(|_| puzzle.prove(epoch_hash, rng.gen(), rng.gen(), None).unwrap())
                .collect::<Vec<_>>();
            let solutions = PuzzleSolutions::new(solutions).unwrap();

            // Reinitialize the puzzle to *clear the cache*.
            let puzzle = sample_puzzle();

            // Partially fill the cache.
            for solution in solutions.values() {
                // Flip a coin.
                if rng.gen::<bool>() {
                    // This operation will fill the cache.
                    puzzle.get_proof_target(solution).unwrap();
                }
            }

            // Compute the proof targets.
            let proof_targets = puzzle.get_proof_targets(&solutions).unwrap();

            // Ensure the proof targets are correct.
            for ((_, solution), proof_target) in solutions.iter().zip(proof_targets) {
                assert_eq!(puzzle.get_proof_target(solution).unwrap(), proof_target);
            }
        }
    }

    /// Use `cargo test profiler --features timer` to run this test.
    #[ignore]
    #[test]
    fn test_profiler() -> Result<()> {
        fn sample_address_and_counter(rng: &mut (impl CryptoRng + RngCore)) -> (Address<CurrentNetwork>, u64) {
            let private_key = PrivateKey::new(rng).unwrap();
            let address = Address::try_from(private_key).unwrap();
            let counter = rng.next_u64();
            (address, counter)
        }

        let mut rng = rand::thread_rng();

        // Initialize a new puzzle.
        let puzzle = sample_puzzle();

        // Initialize an epoch hash.
        let epoch_hash = rng.gen();

        for batch_size in [1, 2, <CurrentNetwork as Network>::MAX_SOLUTIONS] {
            // Generate the solutions.
            let solutions = (0..batch_size)
                .map(|_| {
                    let (address, counter) = sample_address_and_counter(&mut rng);
                    puzzle.prove(epoch_hash, address, counter, None).unwrap()
                })
                .collect::<Vec<_>>();
            // Construct the solutions.
            let solutions = PuzzleSolutions::new(solutions).unwrap();
            // Verify the solutions.
            puzzle.check_solutions(&solutions, epoch_hash, 0u64).unwrap();
        }

        bail!("\n\nRemember to #[ignore] this test!\n\n")
    }
}