snarkvm_ledger_store/helpers/memory/internal/map.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![allow(clippy::type_complexity)]
use crate::helpers::{Map, MapRead};
use console::network::prelude::*;
use indexmap::IndexMap;
use core::{borrow::Borrow, hash::Hash};
use parking_lot::{Mutex, RwLock};
use std::{
borrow::Cow,
collections::{BTreeMap, btree_map},
sync::{
Arc,
atomic::{AtomicBool, Ordering},
},
};
#[derive(Clone)]
pub struct MemoryMap<
K: Copy + Clone + PartialEq + Eq + Hash + Serialize + for<'de> Deserialize<'de> + Send + Sync,
V: Clone + PartialEq + Eq + Serialize + for<'de> Deserialize<'de> + Send + Sync,
> {
// The reason for using BTreeMap with binary keys is for the order of items to be the same as
// the one in the RocksDB-backed DataMap; if not for that, it could be any map
// with fast lookups and the keys could be typed (i.e. just `K` instead of `Vec<u8>`).
map: Arc<RwLock<BTreeMap<Vec<u8>, V>>>,
batch_in_progress: Arc<AtomicBool>,
atomic_batch: Arc<Mutex<Vec<(K, Option<V>)>>>,
checkpoint: Arc<Mutex<Vec<usize>>>,
}
impl<
K: Copy + Clone + PartialEq + Eq + Hash + Serialize + for<'de> Deserialize<'de> + Send + Sync,
V: Clone + PartialEq + Eq + Serialize + for<'de> Deserialize<'de> + Send + Sync,
> Default for MemoryMap<K, V>
{
fn default() -> Self {
Self {
map: Default::default(),
batch_in_progress: Default::default(),
atomic_batch: Default::default(),
checkpoint: Default::default(),
}
}
}
impl<
K: Copy + Clone + PartialEq + Eq + Hash + Serialize + for<'de> Deserialize<'de> + Send + Sync,
V: Clone + PartialEq + Eq + Serialize + for<'de> Deserialize<'de> + Send + Sync,
> FromIterator<(K, V)> for MemoryMap<K, V>
{
/// Initializes a new `MemoryMap` from the given iterator.
fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
// Serialize each key in the iterator, and collect them into a map.
// Note: The 'unwrap' is safe here, because the keys are defined by us.
let map = iter.into_iter().map(|(k, v)| (bincode::serialize(&k).unwrap(), v)).collect();
// Return the new map.
Self {
map: Arc::new(RwLock::new(map)),
batch_in_progress: Default::default(),
atomic_batch: Default::default(),
checkpoint: Default::default(),
}
}
}
impl<
'a,
K: 'a + Copy + Clone + PartialEq + Eq + Hash + Serialize + for<'de> Deserialize<'de> + Send + Sync,
V: 'a + Clone + PartialEq + Eq + Serialize + for<'de> Deserialize<'de> + Send + Sync,
> Map<'a, K, V> for MemoryMap<K, V>
{
///
/// Inserts the given key-value pair into the map.
///
fn insert(&self, key: K, value: V) -> Result<()> {
// Determine if an atomic batch is in progress.
match self.is_atomic_in_progress() {
// If a batch is in progress, add the key-value pair to the batch.
true => {
self.atomic_batch.lock().push((key, Some(value)));
}
// Otherwise, insert the key-value pair directly into the map.
false => {
self.map.write().insert(bincode::serialize(&key)?, value);
}
}
Ok(())
}
///
/// Removes the key-value pair for the given key from the map.
///
fn remove(&self, key: &K) -> Result<()> {
// Determine if an atomic batch is in progress.
match self.is_atomic_in_progress() {
// If a batch is in progress, add the key-None pair to the batch.
true => {
self.atomic_batch.lock().push((*key, None));
}
// Otherwise, remove the key-value pair directly from the map.
false => {
self.map.write().remove(&bincode::serialize(&key)?);
}
}
Ok(())
}
///
/// Begins an atomic operation. Any further calls to `insert` and `remove` will be queued
/// without an actual write taking place until `finish_atomic` is called.
///
fn start_atomic(&self) {
// Set the atomic batch flag to `true`.
self.batch_in_progress.store(true, Ordering::SeqCst);
// Ensure that the atomic batch is empty.
assert!(self.atomic_batch.lock().is_empty());
}
///
/// Checks whether an atomic operation is currently in progress. This can be done to ensure
/// that lower-level operations don't start and finish their individual atomic write batch
/// if they are already part of a larger one.
///
fn is_atomic_in_progress(&self) -> bool {
self.batch_in_progress.load(Ordering::SeqCst)
}
///
/// Saves the current list of pending operations, so that if `atomic_rewind` is called,
/// we roll back all future operations, and return to the start of this checkpoint.
///
fn atomic_checkpoint(&self) {
// Push the current length of the atomic batch to the checkpoint stack.
self.checkpoint.lock().push(self.atomic_batch.lock().len());
}
///
/// Removes the latest atomic checkpoint.
///
fn clear_latest_checkpoint(&self) {
// Removes the latest checkpoint.
let _ = self.checkpoint.lock().pop();
}
///
/// Removes all pending operations to the last `atomic_checkpoint`
/// (or to `start_atomic` if no checkpoints have been created).
///
fn atomic_rewind(&self) {
// Acquire the write lock on the atomic batch.
let mut atomic_batch = self.atomic_batch.lock();
// Retrieve the last checkpoint.
let checkpoint = self.checkpoint.lock().pop().unwrap_or(0);
// Remove all operations after the checkpoint.
atomic_batch.truncate(checkpoint);
}
///
/// Aborts the current atomic operation.
///
fn abort_atomic(&self) {
// Clear the atomic batch.
*self.atomic_batch.lock() = Default::default();
// Clear the checkpoint stack.
*self.checkpoint.lock() = Default::default();
// Set the atomic batch flag to `false`.
self.batch_in_progress.store(false, Ordering::SeqCst);
}
///
/// Finishes an atomic operation, performing all the queued writes.
///
fn finish_atomic(&self) -> Result<()> {
// Retrieve the atomic batch.
let operations = core::mem::take(&mut *self.atomic_batch.lock());
// Insert the operations into an index map to remove any operations that would have been overwritten anyways.
let operations: IndexMap<_, _> = IndexMap::from_iter(operations);
if !operations.is_empty() {
// Acquire a write lock on the map.
let mut locked_map = self.map.write();
// Prepare the key and value for each queued operation.
//
// Note: This step is taken to ensure (with 100% certainty) that there will be
// no chance to fail partway through committing the queued operations.
//
// The expected behavior is that either all the operations will be committed
// or none of them will be.
let prepared_operations = operations
.into_iter()
.map(|(key, value)| Ok((bincode::serialize(&key)?, value)))
.collect::<Result<Vec<_>>>()?;
// Perform all the queued operations.
for (key, value) in prepared_operations {
match value {
Some(value) => locked_map.insert(key, value),
None => locked_map.remove(&key),
};
}
}
// Clear the checkpoint stack.
*self.checkpoint.lock() = Default::default();
// Set the atomic batch flag to `false`.
self.batch_in_progress.store(false, Ordering::SeqCst);
Ok(())
}
///
/// Once called, the subsequent atomic write batches will be queued instead of being executed
/// at the end of their scope. `unpause_atomic_writes` needs to be called in order to
/// restore the usual behavior.
///
fn pause_atomic_writes(&self) -> Result<()> {
// No effect.
Ok(())
}
///
/// Executes all of the queued writes as a single atomic operation and restores the usual
/// behavior of atomic write batches that was altered by calling `pause_atomic_writes`.
///
fn unpause_atomic_writes<const DISCARD_BATCH: bool>(&self) -> Result<()> {
// No effect.
Ok(())
}
}
impl<
'a,
K: 'a + Copy + Clone + PartialEq + Eq + Hash + Serialize + for<'de> Deserialize<'de> + Send + Sync,
V: 'a + Clone + PartialEq + Eq + Serialize + for<'de> Deserialize<'de> + Send + Sync,
> MapRead<'a, K, V> for MemoryMap<K, V>
{
type Iterator = core::iter::Map<btree_map::IntoIter<Vec<u8>, V>, fn((Vec<u8>, V)) -> (Cow<'a, K>, Cow<'a, V>)>;
type Keys = core::iter::Map<btree_map::IntoKeys<Vec<u8>, V>, fn(Vec<u8>) -> Cow<'a, K>>;
type PendingIterator =
core::iter::Map<indexmap::map::IntoIter<K, Option<V>>, fn((K, Option<V>)) -> (Cow<'a, K>, Option<Cow<'a, V>>)>;
type Values = core::iter::Map<btree_map::IntoValues<Vec<u8>, V>, fn(V) -> Cow<'a, V>>;
///
/// Returns the number of confirmed entries in the map.
///
fn len_confirmed(&self) -> usize {
self.map.read().len()
}
///
/// Returns `true` if the given key exists in the map.
///
fn contains_key_confirmed<Q>(&self, key: &Q) -> Result<bool>
where
K: Borrow<Q>,
Q: PartialEq + Eq + Hash + Serialize + ?Sized,
{
Ok(self.map.read().contains_key(&bincode::serialize(key)?))
}
///
/// Returns `true` if the given key exists in the map.
/// This method first checks the atomic batch, and if it does not exist, then checks the map.
///
fn contains_key_speculative<Q>(&self, key: &Q) -> Result<bool>
where
K: Borrow<Q>,
Q: PartialEq + Eq + Hash + Serialize + ?Sized,
{
// If a batch is in progress, check the atomic batch first.
if self.is_atomic_in_progress() {
// If the key is present in the atomic batch, then check if the value is 'Some(V)'.
// We iterate from the back of the `atomic_batch` to find the latest value.
if let Some((_, value)) = self.atomic_batch.lock().iter().rev().find(|&(k, _)| k.borrow() == key) {
// If the value is 'Some(V)', then the key exists.
// If the value is 'Some(None)', then the key is scheduled to be removed.
return Ok(value.is_some());
}
}
// Otherwise, check the map for the key.
self.contains_key_confirmed(key)
}
///
/// Returns the value for the given key from the map, if it exists.
///
fn get_confirmed<Q>(&'a self, key: &Q) -> Result<Option<Cow<'a, V>>>
where
K: Borrow<Q>,
Q: PartialEq + Eq + Hash + Serialize + ?Sized,
{
Ok(self.map.read().get(&bincode::serialize(key)?).cloned().map(Cow::Owned))
}
///
/// Returns the current value for the given key if it is scheduled
/// to be inserted as part of an atomic batch.
///
/// If the key does not exist, returns `None`.
/// If the key is removed in the batch, returns `Some(None)`.
/// If the key is inserted in the batch, returns `Some(Some(value))`.
///
fn get_pending<Q>(&self, key: &Q) -> Option<Option<V>>
where
K: Borrow<Q>,
Q: PartialEq + Eq + Hash + Serialize + ?Sized,
{
// Return early if there is no atomic batch in progress.
if self.is_atomic_in_progress() {
// We iterate from the back of the `atomic_batch` to find the latest value.
self.atomic_batch.lock().iter().rev().find(|&(k, _)| k.borrow() == key).map(|(_, value)| value).cloned()
} else {
None
}
}
///
/// Returns an iterator visiting each key-value pair in the atomic batch.
///
fn iter_pending(&'a self) -> Self::PendingIterator {
let filtered_atomic_batch: IndexMap<_, _> = IndexMap::from_iter(self.atomic_batch.lock().clone());
filtered_atomic_batch.into_iter().map(|(k, v)| (Cow::Owned(k), v.map(|v| Cow::Owned(v))))
}
///
/// Returns an iterator visiting each key-value pair in the map.
///
fn iter_confirmed(&'a self) -> Self::Iterator {
// Note: The 'unwrap' is safe here, because the keys are defined by us.
self.map.read().clone().into_iter().map(|(k, v)| (Cow::Owned(bincode::deserialize(&k).unwrap()), Cow::Owned(v)))
}
///
/// Returns an iterator over each key in the map.
///
fn keys_confirmed(&'a self) -> Self::Keys {
// Note: The 'unwrap' is safe here, because the keys are defined by us.
self.map.read().clone().into_keys().map(|k| Cow::Owned(bincode::deserialize(&k).unwrap()))
}
///
/// Returns an iterator over each value in the map.
///
fn values_confirmed(&'a self) -> Self::Values {
self.map.read().clone().into_values().map(Cow::Owned)
}
}
impl<
K: Copy + Clone + PartialEq + Eq + Hash + Serialize + for<'de> Deserialize<'de> + Send + Sync,
V: Clone + PartialEq + Eq + Serialize + for<'de> Deserialize<'de> + Send + Sync,
> Deref for MemoryMap<K, V>
{
type Target = Arc<RwLock<BTreeMap<Vec<u8>, V>>>;
fn deref(&self) -> &Self::Target {
&self.map
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{FinalizeMode, atomic_batch_scope, atomic_finalize};
use console::{account::Address, network::MainnetV0};
type CurrentNetwork = MainnetV0;
#[test]
fn test_contains_key_sanity_check() {
// Initialize an address.
let address =
Address::<CurrentNetwork>::from_str("aleo1q6qstg8q8shwqf5m6q5fcenuwsdqsvp4hhsgfnx5chzjm3secyzqt9mxm8")
.unwrap();
// Sanity check.
let addresses: IndexMap<Address<CurrentNetwork>, ()> = [(address, ())].into_iter().collect();
assert!(addresses.contains_key(&address));
// Initialize a map.
let map: MemoryMap<Address<CurrentNetwork>, ()> = [(address, ())].into_iter().collect();
assert!(map.contains_key_confirmed(&address).unwrap());
}
#[test]
fn test_insert_and_get_speculative() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
crate::helpers::test_helpers::map::check_insert_and_get_speculative(map);
}
#[test]
fn test_remove_and_get_speculative() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
crate::helpers::test_helpers::map::check_remove_and_get_speculative(map);
}
#[test]
fn test_contains_key() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
crate::helpers::test_helpers::map::check_contains_key(map);
}
#[test]
fn test_check_iterators_match() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
crate::helpers::test_helpers::map::check_iterators_match(map);
}
#[test]
fn test_atomic_writes_are_batched() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
crate::helpers::test_helpers::map::check_atomic_writes_are_batched(map);
}
#[test]
fn test_atomic_writes_can_be_aborted() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
crate::helpers::test_helpers::map::check_atomic_writes_can_be_aborted(map);
}
#[test]
fn test_checkpoint_and_rewind() {
// The number of items that will be queued to be inserted into the map.
const NUM_ITEMS: usize = 10;
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start an atomic write batch.
map.start_atomic();
{
// Queue (since a batch is in progress) NUM_ITEMS / 2 insertions.
for i in 0..NUM_ITEMS / 2 {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
}
// Run the same sequence of checks 3 times.
for _ in 0..3 {
// Perform a checkpoint.
map.atomic_checkpoint();
// Make sure the checkpoint index is NUM_ITEMS / 2.
assert_eq!(map.checkpoint.lock().last(), Some(&(NUM_ITEMS / 2)));
{
// Queue (since a batch is in progress) another NUM_ITEMS / 2 insertions.
for i in (NUM_ITEMS / 2)..NUM_ITEMS {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is NUM_ITEMS / 2.
assert_eq!(map.checkpoint.lock().last(), Some(&(NUM_ITEMS / 2)));
}
// Abort the current atomic write batch.
map.atomic_rewind();
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
{
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
}
}
// Finish the atomic batch.
map.finish_atomic().unwrap();
// The map should contain NUM_ITEMS / 2.
assert_eq!(map.iter_confirmed().count(), NUM_ITEMS / 2);
// The pending batch should contain no items.
assert!(map.iter_pending().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
}
#[test]
fn test_nested_atomic_batch_scope() -> Result<()> {
// The number of items that will be queued to be inserted into the map.
const NUM_ITEMS: usize = 10;
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start a nested atomic batch scope that completes successfully.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) NUM_ITEMS / 2 insertions.
for i in 0..NUM_ITEMS / 2 {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start a nested atomic batch scope that completes successfully.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) another NUM_ITEMS / 2 insertions.
for i in (NUM_ITEMS / 2)..NUM_ITEMS {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is NUM_ITEMS / 2.
assert_eq!(map.checkpoint.lock().last(), Some(&(NUM_ITEMS / 2)));
Ok(())
})?;
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
Ok(())
})?;
// The map should contain NUM_ITEMS.
assert_eq!(map.iter_confirmed().count(), NUM_ITEMS);
// The pending batch should contain no items.
assert!(map.iter_pending().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
Ok(())
}
#[test]
fn test_failed_nested_atomic_batch_scope() {
// The number of items that will be queued to be inserted into the map.
const NUM_ITEMS: usize = 10;
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start an atomic write batch.
let run_nested_atomic_batch_scope = || -> Result<()> {
// Start an atomic batch scope that fails.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) NUM_ITEMS / 2 insertions.
for i in 0..NUM_ITEMS / 2 {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start a nested atomic write batch that completes correctly.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) another NUM_ITEMS / 2 insertions.
for i in (NUM_ITEMS / 2)..NUM_ITEMS {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is NUM_ITEMS / 2.
assert_eq!(map.checkpoint.lock().last(), Some(&(NUM_ITEMS / 2)));
bail!("This batch should fail.");
})?;
unreachable!("The atomic write batch should fail before reaching this point.")
})?;
unreachable!("The atomic write batch should fail before reaching this point.")
};
// Ensure that the nested atomic write batch fails.
assert!(run_nested_atomic_batch_scope().is_err());
}
#[test]
fn test_atomic_finalize() -> Result<()> {
// The number of items that will be queued to be inserted into the map.
const NUM_ITEMS: usize = 10;
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start an atomic finalize.
let outcome = atomic_finalize!(map, FinalizeMode::RealRun, {
// Start a nested atomic batch scope that completes successfully.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) NUM_ITEMS / 2 insertions.
for i in 0..NUM_ITEMS / 2 {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is 0.
assert_eq!(map.checkpoint.lock().last(), Some(&0));
Ok(())
})
.unwrap();
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start a nested atomic write batch that completes correctly.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) another NUM_ITEMS / 2 insertions.
for i in (NUM_ITEMS / 2)..NUM_ITEMS {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is NUM_ITEMS / 2.
assert_eq!(map.checkpoint.lock().last(), Some(&(NUM_ITEMS / 2)));
Ok(())
})
.unwrap();
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
Ok((true, 0, "a"))
});
// The atomic finalize should have passed the result through.
assert_eq!(outcome.unwrap(), (true, 0, "a"));
// The map should contain NUM_ITEMS.
assert_eq!(map.iter_confirmed().count(), NUM_ITEMS);
// The pending batch should contain no items.
assert!(map.iter_pending().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
Ok(())
}
#[test]
fn test_atomic_finalize_failing_internal_scope() -> Result<()> {
// The number of items that will be queued to be inserted into the map.
const NUM_ITEMS: usize = 10;
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start an atomic finalize.
let outcome = atomic_finalize!(map, FinalizeMode::RealRun, {
// Start a nested atomic batch scope that completes successfully.
atomic_batch_scope!(map, {
// Queue (since a batch is in progress) NUM_ITEMS / 2 insertions.
for i in 0..NUM_ITEMS / 2 {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is 0.
assert_eq!(map.checkpoint.lock().last(), Some(&0));
Ok(())
})
.unwrap();
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Start a nested atomic write batch that fails.
let result: Result<()> = atomic_batch_scope!(map, {
// Queue (since a batch is in progress) another NUM_ITEMS / 2 insertions.
for i in (NUM_ITEMS / 2)..NUM_ITEMS {
map.insert(i, i.to_string()).unwrap();
}
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS);
// Make sure the checkpoint index is NUM_ITEMS / 2.
assert_eq!(map.checkpoint.lock().last(), Some(&(NUM_ITEMS / 2)));
bail!("This batch scope should fail.");
});
// Ensure that the batch scope failed.
assert!(result.is_err());
// The map should still contain no items.
assert!(map.iter_confirmed().next().is_none());
// The pending batch should contain NUM_ITEMS / 2 items.
assert_eq!(map.iter_pending().count(), NUM_ITEMS / 2);
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
Ok(())
});
// The atomic finalize should have succeeded.
assert!(outcome.is_ok());
// The map should contain NUM_ITEMS / 2.
assert_eq!(map.iter_confirmed().count(), NUM_ITEMS / 2);
// The pending batch should contain no items.
assert!(map.iter_pending().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
Ok(())
}
#[test]
fn test_atomic_finalize_fails_to_start() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Construct an atomic batch scope.
let outcome: Result<()> = atomic_batch_scope!(map, {
// Start an atomic finalize.
let outcome = atomic_finalize!(map, FinalizeMode::RealRun, { Ok(()) });
// Ensure that the atomic finalize fails.
assert!(outcome.is_err());
unreachable!("The batch scope should fail before we reach this point.");
});
// Ensure that the atomic batch scope fails.
assert!(outcome.is_err());
// Start an atomic operation.
map.start_atomic();
// We need to catch the `atomic_finalize` here, otherwise it will end the test early.
let outcome = || atomic_finalize!(map, FinalizeMode::RealRun, { Ok(()) });
// Ensure that the atomic finalize fails if an atomic batch is in progress.
assert!(outcome().is_err());
}
#[test]
fn test_atomic_checkpoint_truncation() {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Insert the key.
map.insert(0, "0".to_string()).unwrap();
// Start an atomic finalize.
let outcome = atomic_batch_scope!(map, {
// Insert the key.
map.insert(0, "1".to_string()).unwrap();
// Create a failing atomic batch scope that will reset the checkpoint.
let result: Result<()> = atomic_batch_scope!(map, {
// Make sure the checkpoint index is 1.
assert_eq!(map.checkpoint.lock().last(), Some(&1));
// Update the key.
map.insert(0, "2".to_string()).unwrap();
bail!("This batch scope should fail.")
});
// Ensure that the batch scope failed.
assert!(result.is_err());
// The map should contain 1 item.
assert_eq!(map.iter_confirmed().count(), 1);
// The pending batch should contain 1 item.
assert_eq!(map.iter_pending().count(), 1);
// Ensure the pending operations still has the initial insertion.
assert_eq!(map.get_pending(&0), Some(Some("1".to_string())));
// Ensure the confirmed value has not changed.
assert_eq!(*map.iter_confirmed().next().unwrap().1, "0");
Ok(())
});
assert!(outcome.is_ok());
// The map should contain 1 item.
assert_eq!(map.iter_confirmed().count(), 1);
// The pending batch should contain no items.
assert!(map.iter_pending().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Ensure that the map value is correct.
assert_eq!(*map.iter_confirmed().next().unwrap().1, "1");
}
#[test]
fn test_atomic_finalize_with_nested_batch_scope() -> Result<()> {
// Initialize a map.
let map: MemoryMap<usize, String> = Default::default();
// Sanity check.
assert!(map.iter_confirmed().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Insert the key.
map.insert(0, "0".to_string()).unwrap();
// Start an atomic finalize.
let outcome = atomic_finalize!(map, FinalizeMode::RealRun, {
// Create an atomic batch scope that will complete correctly.
// Simulates an accepted transaction.
let result: Result<()> = atomic_batch_scope!(map, {
// Make sure the checkpoint index is 0.
assert_eq!(map.checkpoint.lock().last(), Some(&0));
// Insert the key.
map.insert(0, "1".to_string()).unwrap();
Ok(())
});
// The atomic finalize should have succeeded.
assert!(result.is_ok());
// The map should contain 1 item.
assert_eq!(map.iter_confirmed().count(), 1);
// The pending batch should contain 1 item.
assert_eq!(map.iter_pending().count(), 1);
// Make sure the pending operations is correct.
assert_eq!(map.get_pending(&0), Some(Some("1".to_string())));
// Create a failing atomic batch scope that will reset the checkpoint.
// Simulates a rejected transaction.
let result: Result<()> = atomic_batch_scope!(map, {
// Make sure the checkpoint index is 1.
assert_eq!(map.checkpoint.lock().last(), Some(&1));
// Simulate an instruction
let result: Result<()> = atomic_batch_scope!(map, {
// Update the key.
map.insert(0, "2".to_string()).unwrap();
Ok(())
});
assert!(result.is_ok());
// Simulates an instruction that fails.
let result: Result<()> = atomic_batch_scope!(map, {
// Make sure the checkpoint index is 2.
assert_eq!(map.checkpoint.lock().last(), Some(&2));
// Update the key.
map.insert(0, "3".to_string()).unwrap();
Ok(())
});
assert!(result.is_ok());
bail!("This batch scope should fail.")
});
// Ensure that the batch scope failed.
assert!(result.is_err());
// The map should contain 1 item.
assert_eq!(map.iter_confirmed().count(), 1);
// The pending batch should contain 1 item.
assert_eq!(map.iter_pending().count(), 1);
// Make sure the pending operations still has the initial insertion.
assert_eq!(map.get_pending(&0), Some(Some("1".to_string())));
Ok(())
});
assert!(outcome.is_ok());
// The map should contain 1 item.
assert_eq!(map.iter_confirmed().count(), 1);
// The pending batch should contain no items.
assert!(map.iter_pending().next().is_none());
// Make sure the checkpoint index is None.
assert_eq!(map.checkpoint.lock().last(), None);
// Ensure that the map value is correct.
assert_eq!(*map.iter_confirmed().next().unwrap().1, "1");
Ok(())
}
}