1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;
use snarkvm_curves::traits::{PairingCurve, PairingEngine};
use snarkvm_utilities::{
    CanonicalDeserialize,
    CanonicalSerialize,
    Compress,
    FromBytes,
    Read,
    SerializationError,
    ToBytes,
    Valid,
    Validate,
    Write,
};

use anyhow::{anyhow, bail, ensure, Result};
use std::{collections::BTreeMap, ops::Range, sync::Arc};

const NUM_POWERS_15: usize = 1 << 15;
const NUM_POWERS_16: usize = 1 << 16;
const NUM_POWERS_17: usize = 1 << 17;
const NUM_POWERS_18: usize = 1 << 18;
const NUM_POWERS_19: usize = 1 << 19;
const NUM_POWERS_20: usize = 1 << 20;
const NUM_POWERS_21: usize = 1 << 21;
const NUM_POWERS_22: usize = 1 << 22;
const NUM_POWERS_23: usize = 1 << 23;
const NUM_POWERS_24: usize = 1 << 24;
const NUM_POWERS_25: usize = 1 << 25;
const NUM_POWERS_26: usize = 1 << 26;
const NUM_POWERS_27: usize = 1 << 27;
const NUM_POWERS_28: usize = 1 << 28;

/// The maximum degree supported by the SRS.
const MAX_NUM_POWERS: usize = NUM_POWERS_28;

lazy_static::lazy_static! {
    static ref POWERS_OF_BETA_G_15: Vec<u8> = Degree15::load_bytes().expect("Failed to load powers of beta in universal SRS");
    static ref SHIFTED_POWERS_OF_BETA_G_15: Vec<u8> = ShiftedDegree15::load_bytes().expect("Failed to load powers of beta in universal SRS");
    static ref POWERS_OF_BETA_GAMMA_G: Vec<u8> = Gamma::load_bytes().expect("Failed to load powers of beta wrt gamma * G in universal SRS");
    static ref NEG_POWERS_OF_BETA_H: Vec<u8> = NegBeta::load_bytes().expect("Failed to load negative powers of beta in universal SRS");
    static ref BETA_H: Vec<u8> = BetaH::load_bytes().expect("Failed to load negative powers of beta in universal SRS");
}

/// A vector of powers of beta G.
#[derive(Debug, Clone)]
pub struct PowersOfG<E: PairingEngine> {
    /// The powers of beta G.
    powers_of_beta_g: PowersOfBetaG<E>,
    /// Group elements of form `{ \beta^i \gamma G }`, where `i` is from 0 to `degree`,
    /// This is used for hiding.
    powers_of_beta_times_gamma_g: Arc<BTreeMap<usize, E::G1Affine>>,
    /// Group elements of form `{ \beta^{max_degree - i} H }`, where `i`
    /// is of the form `2^k - 1` for `k` in `1` to `log_2(max_degree)`.
    negative_powers_of_beta_h: Arc<BTreeMap<usize, E::G2Affine>>,
    /// Information required to enforce degree bounds. Each pair is of the form `(degree_bound, shifting_advice)`.
    /// Each pair is in the form `(degree_bound, \beta^{max_degree - i} H),` where `H` is the generator of G2,
    /// and `i` is of the form `2^k - 1` for `k` in `1` to `log_2(max_degree)`.
    prepared_negative_powers_of_beta_h: Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>>,
    /// beta * h
    beta_h: E::G2Affine,
}

impl<E: PairingEngine> PowersOfG<E> {
    /// Initializes the hard-coded instance of the powers.
    pub fn load() -> Result<Self> {
        let powers_of_beta_g = PowersOfBetaG::load()?;

        // Reconstruct powers of beta_times_gamma_g.
        let powers_of_beta_times_gamma_g =
            Arc::new(BTreeMap::deserialize_uncompressed_unchecked(&**POWERS_OF_BETA_GAMMA_G)?);

        // Reconstruct negative powers of beta_h.
        let negative_powers_of_beta_h: Arc<BTreeMap<usize, E::G2Affine>> =
            Arc::new(BTreeMap::deserialize_uncompressed_unchecked(&**NEG_POWERS_OF_BETA_H)?);

        // Compute the prepared negative powers of beta_h.
        let prepared_negative_powers_of_beta_h: Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>> =
            Arc::new(negative_powers_of_beta_h.iter().map(|(d, affine)| (*d, affine.prepare())).collect());

        let beta_h = E::G2Affine::deserialize_uncompressed_unchecked(&**BETA_H)?;

        // Return the powers.
        Ok(Self {
            powers_of_beta_g,
            powers_of_beta_times_gamma_g,
            negative_powers_of_beta_h,
            prepared_negative_powers_of_beta_h,
            beta_h,
        })
    }

    /// Download the powers of beta G specified by `range`.
    pub fn download_powers_for(&mut self, range: Range<usize>) -> Result<()> {
        self.powers_of_beta_g.download_powers_for(&range)
    }

    /// Returns the number of contiguous powers of beta G starting from the 0-th power.
    pub fn num_powers(&self) -> usize {
        self.powers_of_beta_g.num_powers()
    }

    /// Returns the maximum possible number of contiguous powers of beta G starting from the 0-th power.
    pub fn max_num_powers(&self) -> usize {
        MAX_NUM_POWERS
    }

    /// Returns the powers of beta * gamma G.
    pub fn powers_of_beta_gamma_g(&self) -> Arc<BTreeMap<usize, E::G1Affine>> {
        self.powers_of_beta_times_gamma_g.clone()
    }

    /// Returns the `index`-th power of beta * G.
    pub fn power_of_beta_g(&mut self, index: usize) -> Result<E::G1Affine> {
        self.powers_of_beta_g.power(index)
    }

    /// Returns the powers of `beta * G` that lie within `range`.
    pub fn powers_of_beta_g(&mut self, range: Range<usize>) -> Result<&[E::G1Affine]> {
        self.powers_of_beta_g.powers(range)
    }

    pub fn negative_powers_of_beta_h(&self) -> Arc<BTreeMap<usize, E::G2Affine>> {
        self.negative_powers_of_beta_h.clone()
    }

    pub fn prepared_negative_powers_of_beta_h(&self) -> Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>> {
        self.prepared_negative_powers_of_beta_h.clone()
    }

    pub fn beta_h(&self) -> E::G2Affine {
        self.beta_h
    }
}

impl<E: PairingEngine> CanonicalSerialize for PowersOfG<E> {
    fn serialize_with_mode<W: Write>(&self, mut writer: W, mode: Compress) -> Result<(), SerializationError> {
        self.powers_of_beta_g.serialize_with_mode(&mut writer, mode)?;
        self.powers_of_beta_times_gamma_g.serialize_with_mode(&mut writer, mode)?;
        self.negative_powers_of_beta_h.serialize_with_mode(&mut writer, mode)?;
        self.beta_h.serialize_with_mode(&mut writer, mode)?;
        Ok(())
    }

    fn serialized_size(&self, mode: Compress) -> usize {
        self.powers_of_beta_g.serialized_size(mode)
            + self.powers_of_beta_times_gamma_g.serialized_size(mode)
            + self.negative_powers_of_beta_h.serialized_size(mode)
            + self.beta_h.serialized_size(mode)
    }
}

impl<E: PairingEngine> CanonicalDeserialize for PowersOfG<E> {
    fn deserialize_with_mode<R: Read>(
        mut reader: R,
        compress: Compress,
        validate: Validate,
    ) -> Result<Self, SerializationError> {
        let powers_of_beta_g = PowersOfBetaG::deserialize_with_mode(&mut reader, compress, Validate::No)?;

        // Reconstruct powers of beta_times_gamma_g.
        let powers_of_beta_times_gamma_g =
            Arc::new(BTreeMap::deserialize_with_mode(&mut reader, compress, Validate::No)?);

        // Reconstruct negative powers of beta_h.
        let negative_powers_of_beta_h: Arc<BTreeMap<usize, E::G2Affine>> =
            Arc::new(BTreeMap::deserialize_with_mode(&mut reader, compress, Validate::No)?);

        // Compute the prepared negative powers of beta_h.
        let prepared_negative_powers_of_beta_h: Arc<BTreeMap<usize, <E::G2Affine as PairingCurve>::Prepared>> =
            Arc::new(negative_powers_of_beta_h.iter().map(|(d, affine)| (*d, affine.prepare())).collect());

        let beta_h = E::G2Affine::deserialize_with_mode(&mut reader, compress, Validate::No)?;

        let powers = Self {
            powers_of_beta_g,
            powers_of_beta_times_gamma_g,
            negative_powers_of_beta_h,
            prepared_negative_powers_of_beta_h,
            beta_h,
        };
        if let Validate::Yes = validate {
            powers.check()?;
        }
        Ok(powers)
    }
}

impl<E: PairingEngine> Valid for PowersOfG<E> {
    fn check(&self) -> Result<(), SerializationError> {
        self.powers_of_beta_g.check()?;
        self.powers_of_beta_times_gamma_g.check()?;
        self.negative_powers_of_beta_h.check()?;
        self.prepared_negative_powers_of_beta_h.check()?;
        self.beta_h.check()
    }
}

impl<E: PairingEngine> FromBytes for PowersOfG<E> {
    /// Reads the powers from the buffer.
    fn read_le<R: Read>(reader: R) -> std::io::Result<Self> {
        Self::deserialize_with_mode(reader, Compress::No, Validate::No).map_err(|e| e.into())
    }
}

impl<E: PairingEngine> ToBytes for PowersOfG<E> {
    /// Writes the powers to the buffer.
    fn write_le<W: Write>(&self, writer: W) -> std::io::Result<()> {
        self.serialize_with_mode(writer, Compress::No).map_err(|e| e.into())
    }
}

#[derive(Debug, Clone, CanonicalSerialize, CanonicalDeserialize)]
pub struct PowersOfBetaG<E: PairingEngine> {
    /// Group elements of form `[G, \beta * G, \beta^2 * G, ..., \beta^d G]`.
    powers_of_beta_g: Vec<E::G1Affine>,
    /// Group elements of form `[\beta^i * G, \beta^2 * G, ..., \beta^D G]`.
    /// where D is the maximum degree supported by the SRS.
    shifted_powers_of_beta_g: Vec<E::G1Affine>,
}

impl<E: PairingEngine> PowersOfBetaG<E> {
    /// Returns the number of contiguous powers of beta G starting from the 0-th power.
    pub fn num_powers(&self) -> usize {
        self.powers_of_beta_g.len()
    }

    /// Initializes the hard-coded instance of the powers.
    fn load() -> Result<Self> {
        // Deserialize the group elements.
        let powers_of_beta_g = Vec::deserialize_uncompressed_unchecked(&**POWERS_OF_BETA_G_15)?;

        // Ensure the number of elements is correct.
        ensure!(powers_of_beta_g.len() == NUM_POWERS_15, "Incorrect number of powers in the recovered SRS");

        let shifted_powers_of_beta_g = Vec::deserialize_uncompressed_unchecked(&**SHIFTED_POWERS_OF_BETA_G_15)?;
        ensure!(shifted_powers_of_beta_g.len() == NUM_POWERS_15, "Incorrect number of powers in the recovered SRS");
        Ok(PowersOfBetaG { powers_of_beta_g, shifted_powers_of_beta_g })
    }

    /// Returns the range of powers of beta G.
    /// In detail, it returns the range of the available "normal" powers of beta G, i.e. the
    /// contiguous range of powers of beta G starting from G, and, the range of shifted_powers.
    ///
    /// For example, if the output of this function is `(0..8, 24..32)`, then `self`
    /// contains the powers
    /// * `beta^0 * G, beta^1 * G, ..., beta^7 * G`, and
    /// * `beta^24 * G, ..., beta^31 * G`.
    pub fn available_powers(&self) -> (Range<usize>, Range<usize>) {
        if !self.shifted_powers_of_beta_g.is_empty() {
            let lower_shifted_bound = MAX_NUM_POWERS - self.shifted_powers_of_beta_g.len();
            ((0..self.powers_of_beta_g.len()), (lower_shifted_bound..MAX_NUM_POWERS))
        } else {
            // We can only be in this case if have downloaded all possible powers.
            assert_eq!(self.powers_of_beta_g.len(), MAX_NUM_POWERS, "Incorrect number of powers in the recovered SRS");
            ((0..MAX_NUM_POWERS), (0..MAX_NUM_POWERS))
        }
    }

    fn contains_in_normal_powers(&self, range: &Range<usize>) -> bool {
        let (normal, _) = self.available_powers();
        normal.contains(&range.start) && (normal.end >= range.end)
    }

    fn contains_in_shifted_powers(&self, range: &Range<usize>) -> bool {
        let (_, shifted) = self.available_powers();
        shifted.contains(&range.start) && (shifted.end >= range.end)
    }

    fn contains_powers(&self, range: &Range<usize>) -> bool {
        self.contains_in_normal_powers(range) || self.contains_in_shifted_powers(range)
    }

    fn distance_from_normal_of(&self, range: &Range<usize>) -> usize {
        (range.end as isize - self.available_powers().0.end as isize).unsigned_abs()
    }

    fn distance_from_shifted_of(&self, range: &Range<usize>) -> usize {
        (range.start as isize - self.available_powers().1.start as isize).unsigned_abs()
    }

    /// Assumes that we have the requisite powers.
    fn shifted_powers(&self, range: Range<usize>) -> Result<&[E::G1Affine]> {
        ensure!(
            self.contains_in_shifted_powers(&range),
            "Requested range is not contained in the available shifted powers"
        );

        if range.start < MAX_NUM_POWERS / 2 {
            ensure!(self.shifted_powers_of_beta_g.is_empty());
            // In this case, we have downloaded all the powers, and so
            // all the powers reside in self.powers_of_beta_g.
            Ok(&self.powers_of_beta_g[range])
        } else {
            // In this case, the shifted powers still reside in self.shifted_powers_of_beta_g.
            let lower = self.shifted_powers_of_beta_g.len() - (MAX_NUM_POWERS - range.start);
            let upper = self.shifted_powers_of_beta_g.len() - (MAX_NUM_POWERS - range.end);
            Ok(&self.shifted_powers_of_beta_g[lower..upper])
        }
    }

    /// Assumes that we have the requisite powers.
    fn normal_powers(&self, range: Range<usize>) -> Result<&[E::G1Affine]> {
        ensure!(self.contains_in_normal_powers(&range), "Requested range is not contained in the available powers");
        Ok(&self.powers_of_beta_g[range])
    }

    /// Returns the power of beta times G specified by `target`.
    fn power(&mut self, target: usize) -> Result<E::G1Affine> {
        self.powers(target..(target + 1)).map(|s| s[0])
    }

    /// Slices the underlying file to return a vector of affine elements between `lower` and `upper`.
    fn powers(&mut self, range: Range<usize>) -> Result<&[E::G1Affine]> {
        if range.is_empty() {
            return Ok(&self.powers_of_beta_g[0..0]);
        }
        ensure!(range.start < range.end, "Lower power must be less than upper power");
        ensure!(range.end <= MAX_NUM_POWERS, "Upper bound must be less than the maximum number of powers");
        if !self.contains_powers(&range) {
            // We must download the powers.
            self.download_powers_for(&range)?;
        }
        match self.contains_in_normal_powers(&range) {
            true => self.normal_powers(range),
            false => self.shifted_powers(range),
        }
    }

    pub fn download_powers_for(&mut self, range: &Range<usize>) -> Result<()> {
        if self.contains_in_normal_powers(range) || self.contains_in_shifted_powers(range) {
            return Ok(());
        }
        let half_max = MAX_NUM_POWERS / 2;
        if (range.start <= half_max) && (range.end > half_max) {
            // If the range contains the midpoint, then we must download all the powers.
            // (because we round up to the next power of two).
            self.download_powers_up_to(range.end)?;
            self.shifted_powers_of_beta_g = Vec::new();
        } else if self.distance_from_shifted_of(range) < self.distance_from_normal_of(range) {
            // If the range is closer to the shifted powers, then we download the shifted powers.
            self.download_shifted_powers_from(range.start)?;
        } else {
            // Otherwise, we download the normal powers.
            self.download_powers_up_to(range.end)?;
        }
        Ok(())
    }

    /// This method downloads the universal SRS powers up to the `next_power_of_two(target_degree)`,
    /// and updates `Self` in place with the new powers.
    fn download_powers_up_to(&mut self, end: usize) -> Result<()> {
        // Determine the new power of two.
        let final_power_of_two =
            end.checked_next_power_of_two().ok_or_else(|| anyhow!("Requesting too many powers"))?;
        // Ensure the total number of powers is less than the maximum number of powers.
        ensure!(final_power_of_two <= MAX_NUM_POWERS, "Requesting more powers than exist in the SRS");

        // Retrieve the current power of two.
        let current_power_of_two = self
            .powers_of_beta_g
            .len()
            .checked_next_power_of_two()
            .ok_or_else(|| anyhow!("The current degree is too large"))?;

        // Initialize a vector for the powers of two to be downloaded.
        let mut download_queue = Vec::with_capacity(14);

        // Initialize the first degree to download.
        let mut accumulator = current_power_of_two * 2;
        // Determine the powers of two to download.
        while accumulator <= final_power_of_two {
            download_queue.push(accumulator);
            accumulator =
                accumulator.checked_mul(2).ok_or_else(|| anyhow!("Overflowed while requesting a larger degree"))?;
        }
        ensure!(final_power_of_two * 2 == accumulator, "Ensure the loop terminates at the right power of two");

        // Reserve capacity for the new powers of two.
        let additional_size = final_power_of_two
            .checked_sub(self.powers_of_beta_g.len())
            .ok_or_else(|| anyhow!("final_power_of_two is smaller than existing powers"))?;
        self.powers_of_beta_g.reserve(additional_size);

        // Download the powers of two.
        for num_powers in &download_queue {
            #[cfg(debug_assertions)]
            println!("Loading {num_powers} powers");

            // Download the universal SRS powers if they're not already on disk.
            let additional_bytes = match *num_powers {
                NUM_POWERS_16 => Degree16::load_bytes()?,
                NUM_POWERS_17 => Degree17::load_bytes()?,
                NUM_POWERS_18 => Degree18::load_bytes()?,
                NUM_POWERS_19 => Degree19::load_bytes()?,
                NUM_POWERS_20 => Degree20::load_bytes()?,
                NUM_POWERS_21 => Degree21::load_bytes()?,
                NUM_POWERS_22 => Degree22::load_bytes()?,
                NUM_POWERS_23 => Degree23::load_bytes()?,
                NUM_POWERS_24 => Degree24::load_bytes()?,
                NUM_POWERS_25 => Degree25::load_bytes()?,
                NUM_POWERS_26 => Degree26::load_bytes()?,
                NUM_POWERS_27 => Degree27::load_bytes()?,
                NUM_POWERS_28 => Degree28::load_bytes()?,
                _ => bail!("Cannot download an invalid degree of '{num_powers}'"),
            };

            // Deserialize the group elements.
            let additional_powers = Vec::deserialize_uncompressed_unchecked(&*additional_bytes)?;
            // Extend the powers.
            self.powers_of_beta_g.extend(&additional_powers);
        }
        ensure!(self.powers_of_beta_g.len() == final_power_of_two, "Loaded an incorrect number of powers");
        Ok(())
    }

    /// This method downloads the universal SRS powers from
    /// `start` up to `MAXIMUM_NUM_POWERS - self.shifted_powers_of_beta_g.len()`,
    /// and updates `Self` in place with the new powers.
    fn download_shifted_powers_from(&mut self, start: usize) -> Result<()> {
        // Ensure the total number of powers is less than the maximum number of powers.
        ensure!(start <= MAX_NUM_POWERS, "Requesting more powers than exist in the SRS");

        // The possible powers are:
        // (2^28 - 2^15)..=(2^28)       = 2^15 powers
        // (2^28 - 2^16)..(2^28 - 2^15) = 2^15 powers
        // (2^28 - 2^17)..(2^28 - 2^16) = 2^16 powers
        // (2^28 - 2^18)..(2^28 - 2^17) = 2^17 powers
        // (2^28 - 2^19)..(2^28 - 2^18) = 2^18 powers
        // (2^28 - 2^20)..(2^28 - 2^19) = 2^19 powers
        // (2^28 - 2^21)..(2^28 - 2^20) = 2^20 powers
        // (2^28 - 2^22)..(2^28 - 2^21) = 2^21 powers
        // (2^28 - 2^23)..(2^28 - 2^22) = 2^22 powers
        // (2^28 - 2^24)..(2^28 - 2^23) = 2^23 powers
        // (2^28 - 2^25)..(2^28 - 2^24) = 2^24 powers
        // (2^28 - 2^26)..(2^28 - 2^25) = 2^25 powers
        // (2^28 - 2^27)..(2^28 - 2^26) = 2^26 powers

        // Figure out the number of powers to download, as follows:
        // Let `start := 2^28 - k`.
        // We know that `shifted_powers_of_beta_g.len() = 2^s` such that `2^s < k`.
        // That is, we have already downloaded the powers `2^28 - 2^s` up to `2^28`.
        // Then, we have to download the powers 2^s..k.next_power_of_two().
        let final_num_powers = MAX_NUM_POWERS
            .checked_sub(start)
            .ok_or_else(|| {
                anyhow!("Requesting too many powers: `start ({start}) > MAX_NUM_POWERS ({MAX_NUM_POWERS})`")
            })?
            .checked_next_power_of_two()
            .ok_or_else(|| anyhow!("Requesting too many powers"))?; // Calculated k.next_power_of_two().

        let mut download_queue = Vec::with_capacity(14);
        let mut existing_num_powers = self.shifted_powers_of_beta_g.len();
        while existing_num_powers < final_num_powers {
            existing_num_powers = existing_num_powers
                .checked_mul(2)
                .ok_or_else(|| anyhow!("Overflowed while requesting additional powers"))?;
            download_queue.push(existing_num_powers);
        }
        download_queue.reverse(); // We want to download starting from the smallest power.

        let mut final_powers = Vec::with_capacity(final_num_powers);
        // If the `target_degree` exceeds the current `degree`, proceed to download the new powers.
        for num_powers in &download_queue {
            #[cfg(debug_assertions)]
            println!("Loading {num_powers} shifted powers");

            // Download the universal SRS powers if they're not already on disk.
            let additional_bytes = match *num_powers {
                NUM_POWERS_16 => ShiftedDegree16::load_bytes()?,
                NUM_POWERS_17 => ShiftedDegree17::load_bytes()?,
                NUM_POWERS_18 => ShiftedDegree18::load_bytes()?,
                NUM_POWERS_19 => ShiftedDegree19::load_bytes()?,
                NUM_POWERS_20 => ShiftedDegree20::load_bytes()?,
                NUM_POWERS_21 => ShiftedDegree21::load_bytes()?,
                NUM_POWERS_22 => ShiftedDegree22::load_bytes()?,
                NUM_POWERS_23 => ShiftedDegree23::load_bytes()?,
                NUM_POWERS_24 => ShiftedDegree24::load_bytes()?,
                NUM_POWERS_25 => ShiftedDegree25::load_bytes()?,
                NUM_POWERS_26 => ShiftedDegree26::load_bytes()?,
                NUM_POWERS_27 => ShiftedDegree27::load_bytes()?,
                _ => bail!("Cannot download an invalid degree of '{num_powers}'"),
            };

            // Deserialize the group elements.
            let additional_powers = Vec::deserialize_uncompressed_unchecked(&*additional_bytes)?;

            if final_powers.is_empty() {
                final_powers = additional_powers;
            } else {
                final_powers.extend(additional_powers);
            }
        }
        final_powers.extend(self.shifted_powers_of_beta_g.iter());
        self.shifted_powers_of_beta_g = final_powers;

        ensure!(
            self.shifted_powers_of_beta_g.len() == final_num_powers,
            "Loaded an incorrect number of shifted powers"
        );
        Ok(())
    }
}

impl<E: PairingEngine> FromBytes for PowersOfBetaG<E> {
    /// Reads the powers from the buffer.
    fn read_le<R: Read>(reader: R) -> std::io::Result<Self> {
        Self::deserialize_with_mode(reader, Compress::No, Validate::No).map_err(|e| e.into())
    }
}

impl<E: PairingEngine> ToBytes for PowersOfBetaG<E> {
    /// Writes the powers to the buffer.
    fn write_le<W: Write>(&self, writer: W) -> std::io::Result<()> {
        self.serialize_with_mode(writer, Compress::No).map_err(|e| e.into())
    }
}