1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<N: Network> StackEvaluate<N> for Stack<N> {
    /// Evaluates a program closure on the given inputs.
    ///
    /// # Errors
    /// This method will halt if the given inputs are not the same length as the input statements.
    #[inline]
    fn evaluate_closure<A: circuit::Aleo<Network = N>>(
        &self,
        closure: &Closure<N>,
        inputs: &[Value<N>],
        call_stack: CallStack<N>,
        signer: Address<N>,
        caller: Address<N>,
        tvk: Field<N>,
    ) -> Result<Vec<Value<N>>> {
        let timer = timer!("Stack::evaluate_closure");

        // Ensure the number of inputs matches the number of input statements.
        if closure.inputs().len() != inputs.len() {
            bail!("Expected {} inputs, found {}", closure.inputs().len(), inputs.len())
        }

        // Initialize the registers.
        let mut registers = Registers::<N, A>::new(call_stack, self.get_register_types(closure.name())?.clone());
        // Set the transition signer.
        registers.set_signer(signer);
        // Set the transition caller.
        registers.set_caller(caller);
        // Set the transition view key.
        registers.set_tvk(tvk);
        lap!(timer, "Initialize the registers");

        // Store the inputs.
        closure.inputs().iter().map(|i| i.register()).zip_eq(inputs).try_for_each(|(register, input)| {
            // Assign the input value to the register.
            registers.store(self, register, input.clone())
        })?;
        lap!(timer, "Store the inputs");

        // Evaluate the instructions.
        for instruction in closure.instructions() {
            // If the evaluation fails, bail and return the error.
            if let Err(error) = instruction.evaluate(self, &mut registers) {
                bail!("Failed to evaluate instruction ({instruction}): {error}");
            }
        }
        lap!(timer, "Evaluate the instructions");

        // Load the outputs.
        let outputs = closure
            .outputs()
            .iter()
            .map(|output| {
                match output.operand() {
                    // If the operand is a literal, use the literal directly.
                    Operand::Literal(literal) => Ok(Value::Plaintext(Plaintext::from(literal))),
                    // If the operand is a register, retrieve the stack value from the register.
                    Operand::Register(register) => registers.load(self, &Operand::Register(register.clone())),
                    // If the operand is the program ID, convert the program ID into an address.
                    Operand::ProgramID(program_id) => {
                        Ok(Value::Plaintext(Plaintext::from(Literal::Address(program_id.to_address()?))))
                    }
                    // If the operand is the signer, retrieve the signer from the registers.
                    Operand::Signer => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.signer()?)))),
                    // If the operand is the caller, retrieve the caller from the registers.
                    Operand::Caller => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.caller()?)))),
                    // If the operand is the block height, throw an error.
                    Operand::BlockHeight => bail!("Cannot retrieve the block height from a closure scope."),
                }
            })
            .collect();
        lap!(timer, "Load the outputs");

        finish!(timer);
        outputs
    }

    /// Evaluates a program function on the given inputs.
    ///
    /// # Errors
    /// This method will halt if the given inputs are not the same length as the input statements.
    #[inline]
    fn evaluate_function<A: circuit::Aleo<Network = N>>(
        &self,
        call_stack: CallStack<N>,
        caller: Option<ProgramID<N>>,
    ) -> Result<Response<N>> {
        let timer = timer!("Stack::evaluate_function");

        // Retrieve the next request, based on the call stack mode.
        let (request, call_stack) = match &call_stack {
            CallStack::Evaluate(authorization) => (authorization.next()?, call_stack),
            CallStack::CheckDeployment(requests, _, _) | CallStack::PackageRun(requests, _, _) => {
                let last_request = requests.last().ok_or(anyhow!("CallStack does not contain request"))?.clone();
                (last_request, call_stack)
            }
            // If the evaluation is performed in the `Execute` mode, create a new `Evaluate` mode.
            // This is done to ensure that evaluation during execution is performed consistently.
            CallStack::Execute(authorization, _) => {
                // Note: We need to replicate the authorization, so that 'execute' can call 'authorization.next()?'.
                // This way, the authorization remains unmodified in this 'evaluate' scope.
                let authorization = authorization.replicate();
                let request = authorization.next()?;
                let call_stack = CallStack::Evaluate(authorization);
                (request, call_stack)
            }
            _ => bail!("Illegal operation: call stack must not be `Synthesize` or `Authorize` in `evaluate_function`."),
        };
        lap!(timer, "Retrieve the next request");

        // Ensure the network ID matches.
        ensure!(
            **request.network_id() == N::ID,
            "Network ID mismatch. Expected {}, but found {}",
            N::ID,
            request.network_id()
        );

        // Retrieve the function, inputs, and transition view key.
        let function = self.get_function(request.function_name())?;
        let inputs = request.inputs();
        let signer = *request.signer();
        let caller = match caller {
            // If a caller is provided, then this is an evaluation of a child function.
            Some(caller) => caller.to_address()?,
            // If no caller is provided, then this is an evaluation of a top-level function.
            None => signer,
        };
        let tvk = *request.tvk();

        // Ensure the number of inputs matches.
        if function.inputs().len() != inputs.len() {
            bail!(
                "Function '{}' in the program '{}' expects {} inputs, but {} were provided.",
                function.name(),
                self.program.id(),
                function.inputs().len(),
                inputs.len()
            )
        }
        lap!(timer, "Perform input checks");

        // Initialize the registers.
        let mut registers = Registers::<N, A>::new(call_stack, self.get_register_types(function.name())?.clone());
        // Set the transition signer.
        registers.set_signer(signer);
        // Set the transition caller.
        registers.set_caller(caller);
        // Set the transition view key.
        registers.set_tvk(tvk);
        lap!(timer, "Initialize the registers");

        // Ensure the request is well-formed.
        ensure!(request.verify(&function.input_types()), "Request is invalid");
        lap!(timer, "Verify the request");

        // Store the inputs.
        function.inputs().iter().map(|i| i.register()).zip_eq(inputs).try_for_each(|(register, input)| {
            // Assign the input value to the register.
            registers.store(self, register, input.clone())
        })?;
        lap!(timer, "Store the inputs");

        // Evaluate the instructions.
        // Note: We handle the `call` instruction separately, as it requires special handling.
        for instruction in function.instructions() {
            // Evaluate the instruction.
            let result = match instruction {
                // If the instruction is a `call` instruction, we need to handle it separately.
                Instruction::Call(call) => CallTrait::evaluate(call, self, &mut registers),
                // Otherwise, evaluate the instruction normally.
                _ => instruction.evaluate(self, &mut registers),
            };
            // If the evaluation fails, bail and return the error.
            if let Err(error) = result {
                bail!("Failed to evaluate instruction ({instruction}): {error}");
            }
        }
        lap!(timer, "Evaluate the instructions");

        // Retrieve the output operands.
        let output_operands = &function.outputs().iter().map(|output| output.operand()).collect::<Vec<_>>();
        lap!(timer, "Retrieve the output operands");

        // Load the outputs.
        let outputs = output_operands
            .iter()
            .map(|operand| {
                match operand {
                    // If the operand is a literal, use the literal directly.
                    Operand::Literal(literal) => Ok(Value::Plaintext(Plaintext::from(literal))),
                    // If the operand is a register, retrieve the stack value from the register.
                    Operand::Register(register) => registers.load(self, &Operand::Register(register.clone())),
                    // If the operand is the program ID, convert the program ID into an address.
                    Operand::ProgramID(program_id) => {
                        Ok(Value::Plaintext(Plaintext::from(Literal::Address(program_id.to_address()?))))
                    }
                    // If the operand is the signer, retrieve the signer from the registers.
                    Operand::Signer => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.signer()?)))),
                    // If the operand is the caller, retrieve the caller from the registers.
                    Operand::Caller => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.caller()?)))),
                    // If the operand is the block height, throw an error.
                    Operand::BlockHeight => bail!("Cannot retrieve the block height from a function scope."),
                }
            })
            .collect::<Result<Vec<_>>>()?;
        lap!(timer, "Load the outputs");

        // Map the output operands to registers.
        let output_registers = output_operands
            .iter()
            .map(|operand| match operand {
                Operand::Register(register) => Some(register.clone()),
                _ => None,
            })
            .collect::<Vec<_>>();
        lap!(timer, "Loaded the output registers");

        // Compute the response.
        let response = Response::new(
            request.network_id(),
            self.program.id(),
            function.name(),
            request.inputs().len(),
            request.tvk(),
            request.tcm(),
            outputs,
            &function.output_types(),
            &output_registers,
        );
        finish!(timer);

        response
    }
}