1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<N: Network> StackEvaluate<N> for Stack<N> {
/// Evaluates a program closure on the given inputs.
///
/// # Errors
/// This method will halt if the given inputs are not the same length as the input statements.
#[inline]
fn evaluate_closure<A: circuit::Aleo<Network = N>>(
&self,
closure: &Closure<N>,
inputs: &[Value<N>],
call_stack: CallStack<N>,
signer: Address<N>,
caller: Address<N>,
tvk: Field<N>,
) -> Result<Vec<Value<N>>> {
let timer = timer!("Stack::evaluate_closure");
// Ensure the number of inputs matches the number of input statements.
if closure.inputs().len() != inputs.len() {
bail!("Expected {} inputs, found {}", closure.inputs().len(), inputs.len())
}
// Initialize the registers.
let mut registers = Registers::<N, A>::new(call_stack, self.get_register_types(closure.name())?.clone());
// Set the transition signer.
registers.set_signer(signer);
// Set the transition caller.
registers.set_caller(caller);
// Set the transition view key.
registers.set_tvk(tvk);
lap!(timer, "Initialize the registers");
// Store the inputs.
closure.inputs().iter().map(|i| i.register()).zip_eq(inputs).try_for_each(|(register, input)| {
// Assign the input value to the register.
registers.store(self, register, input.clone())
})?;
lap!(timer, "Store the inputs");
// Evaluate the instructions.
for instruction in closure.instructions() {
// If the evaluation fails, bail and return the error.
if let Err(error) = instruction.evaluate(self, &mut registers) {
bail!("Failed to evaluate instruction ({instruction}): {error}");
}
}
lap!(timer, "Evaluate the instructions");
// Load the outputs.
let outputs = closure
.outputs()
.iter()
.map(|output| {
match output.operand() {
// If the operand is a literal, use the literal directly.
Operand::Literal(literal) => Ok(Value::Plaintext(Plaintext::from(literal))),
// If the operand is a register, retrieve the stack value from the register.
Operand::Register(register) => registers.load(self, &Operand::Register(register.clone())),
// If the operand is the program ID, convert the program ID into an address.
Operand::ProgramID(program_id) => {
Ok(Value::Plaintext(Plaintext::from(Literal::Address(program_id.to_address()?))))
}
// If the operand is the signer, retrieve the signer from the registers.
Operand::Signer => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.signer()?)))),
// If the operand is the caller, retrieve the caller from the registers.
Operand::Caller => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.caller()?)))),
// If the operand is the block height, throw an error.
Operand::BlockHeight => bail!("Cannot retrieve the block height from a closure scope."),
}
})
.collect();
lap!(timer, "Load the outputs");
finish!(timer);
outputs
}
/// Evaluates a program function on the given inputs.
///
/// # Errors
/// This method will halt if the given inputs are not the same length as the input statements.
#[inline]
fn evaluate_function<A: circuit::Aleo<Network = N>>(
&self,
call_stack: CallStack<N>,
caller: Option<ProgramID<N>>,
) -> Result<Response<N>> {
let timer = timer!("Stack::evaluate_function");
// Retrieve the next request, based on the call stack mode.
let (request, call_stack) = match &call_stack {
CallStack::Evaluate(authorization) => (authorization.next()?, call_stack),
CallStack::CheckDeployment(requests, _, _) | CallStack::PackageRun(requests, _, _) => {
let last_request = requests.last().ok_or(anyhow!("CallStack does not contain request"))?.clone();
(last_request, call_stack)
}
// If the evaluation is performed in the `Execute` mode, create a new `Evaluate` mode.
// This is done to ensure that evaluation during execution is performed consistently.
CallStack::Execute(authorization, _) => {
// Note: We need to replicate the authorization, so that 'execute' can call 'authorization.next()?'.
// This way, the authorization remains unmodified in this 'evaluate' scope.
let authorization = authorization.replicate();
let request = authorization.next()?;
let call_stack = CallStack::Evaluate(authorization);
(request, call_stack)
}
_ => bail!("Illegal operation: call stack must not be `Synthesize` or `Authorize` in `evaluate_function`."),
};
lap!(timer, "Retrieve the next request");
// Ensure the network ID matches.
ensure!(
**request.network_id() == N::ID,
"Network ID mismatch. Expected {}, but found {}",
N::ID,
request.network_id()
);
// Retrieve the function, inputs, and transition view key.
let function = self.get_function(request.function_name())?;
let inputs = request.inputs();
let signer = *request.signer();
let caller = match caller {
// If a caller is provided, then this is an evaluation of a child function.
Some(caller) => caller.to_address()?,
// If no caller is provided, then this is an evaluation of a top-level function.
None => signer,
};
let tvk = *request.tvk();
// Ensure the number of inputs matches.
if function.inputs().len() != inputs.len() {
bail!(
"Function '{}' in the program '{}' expects {} inputs, but {} were provided.",
function.name(),
self.program.id(),
function.inputs().len(),
inputs.len()
)
}
lap!(timer, "Perform input checks");
// Initialize the registers.
let mut registers = Registers::<N, A>::new(call_stack, self.get_register_types(function.name())?.clone());
// Set the transition signer.
registers.set_signer(signer);
// Set the transition caller.
registers.set_caller(caller);
// Set the transition view key.
registers.set_tvk(tvk);
lap!(timer, "Initialize the registers");
// Ensure the request is well-formed.
ensure!(request.verify(&function.input_types()), "Request is invalid");
lap!(timer, "Verify the request");
// Store the inputs.
function.inputs().iter().map(|i| i.register()).zip_eq(inputs).try_for_each(|(register, input)| {
// Assign the input value to the register.
registers.store(self, register, input.clone())
})?;
lap!(timer, "Store the inputs");
// Evaluate the instructions.
// Note: We handle the `call` instruction separately, as it requires special handling.
for instruction in function.instructions() {
// Evaluate the instruction.
let result = match instruction {
// If the instruction is a `call` instruction, we need to handle it separately.
Instruction::Call(call) => CallTrait::evaluate(call, self, &mut registers),
// Otherwise, evaluate the instruction normally.
_ => instruction.evaluate(self, &mut registers),
};
// If the evaluation fails, bail and return the error.
if let Err(error) = result {
bail!("Failed to evaluate instruction ({instruction}): {error}");
}
}
lap!(timer, "Evaluate the instructions");
// Retrieve the output operands.
let output_operands = &function.outputs().iter().map(|output| output.operand()).collect::<Vec<_>>();
lap!(timer, "Retrieve the output operands");
// Load the outputs.
let outputs = output_operands
.iter()
.map(|operand| {
match operand {
// If the operand is a literal, use the literal directly.
Operand::Literal(literal) => Ok(Value::Plaintext(Plaintext::from(literal))),
// If the operand is a register, retrieve the stack value from the register.
Operand::Register(register) => registers.load(self, &Operand::Register(register.clone())),
// If the operand is the program ID, convert the program ID into an address.
Operand::ProgramID(program_id) => {
Ok(Value::Plaintext(Plaintext::from(Literal::Address(program_id.to_address()?))))
}
// If the operand is the signer, retrieve the signer from the registers.
Operand::Signer => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.signer()?)))),
// If the operand is the caller, retrieve the caller from the registers.
Operand::Caller => Ok(Value::Plaintext(Plaintext::from(Literal::Address(registers.caller()?)))),
// If the operand is the block height, throw an error.
Operand::BlockHeight => bail!("Cannot retrieve the block height from a function scope."),
}
})
.collect::<Result<Vec<_>>>()?;
lap!(timer, "Load the outputs");
// Map the output operands to registers.
let output_registers = output_operands
.iter()
.map(|operand| match operand {
Operand::Register(register) => Some(register.clone()),
_ => None,
})
.collect::<Vec<_>>();
lap!(timer, "Loaded the output registers");
// Compute the response.
let response = Response::new(
request.network_id(),
self.program.id(),
function.name(),
request.inputs().len(),
request.tvk(),
request.tcm(),
outputs,
&function.output_types(),
&output_registers,
);
finish!(timer);
response
}
}