1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<N: Network> StackExecute<N> for Stack<N> {
    /// Executes a program closure on the given inputs.
    ///
    /// # Errors
    /// This method will halt if the given inputs are not the same length as the input statements.
    #[inline]
    fn execute_closure<A: circuit::Aleo<Network = N>>(
        &self,
        closure: &Closure<N>,
        inputs: &[circuit::Value<A>],
        call_stack: CallStack<N>,
        signer: circuit::Address<A>,
        caller: circuit::Address<A>,
        tvk: circuit::Field<A>,
    ) -> Result<Vec<circuit::Value<A>>> {
        let timer = timer!("Stack::execute_closure");

        // Ensure the call stack is not `Evaluate`.
        ensure!(!matches!(call_stack, CallStack::Evaluate(..)), "Illegal operation: cannot evaluate in execute mode");

        // Ensure the number of inputs matches the number of input statements.
        if closure.inputs().len() != inputs.len() {
            bail!("Expected {} inputs, found {}", closure.inputs().len(), inputs.len())
        }
        lap!(timer, "Check the number of inputs");

        // Retrieve the number of public variables in the circuit.
        let num_public = A::num_public();

        // Initialize the registers.
        let mut registers = Registers::new(call_stack, self.get_register_types(closure.name())?.clone());
        // Set the transition signer, as a circuit.
        registers.set_signer_circuit(signer);
        // Set the transition caller, as a circuit.
        registers.set_caller_circuit(caller);
        // Set the transition view key, as a circuit.
        registers.set_tvk_circuit(tvk);
        lap!(timer, "Initialize the registers");

        // Store the inputs.
        closure.inputs().iter().map(|i| i.register()).zip_eq(inputs).try_for_each(|(register, input)| {
            // If the circuit is in execute mode, then store the console input.
            if let CallStack::Execute(..) = registers.call_stack() {
                use circuit::Eject;
                // Assign the console input to the register.
                registers.store(self, register, input.eject_value())?;
            }
            // Assign the circuit input to the register.
            registers.store_circuit(self, register, input.clone())
        })?;
        lap!(timer, "Store the inputs");

        // Execute the instructions.
        for instruction in closure.instructions() {
            // If the circuit is in execute mode, then evaluate the instructions.
            if let CallStack::Execute(..) = registers.call_stack() {
                // If the evaluation fails, bail and return the error.
                if let Err(error) = instruction.evaluate(self, &mut registers) {
                    bail!("Failed to evaluate instruction ({instruction}): {error}");
                }
            }
            // Execute the instruction.
            instruction.execute(self, &mut registers)?;
        }
        lap!(timer, "Execute the instructions");

        // Ensure the number of public variables remains the same.
        ensure!(A::num_public() == num_public, "Illegal closure operation: instructions injected public variables");

        use circuit::Inject;

        // Load the outputs.
        let outputs = closure
            .outputs()
            .iter()
            .map(|output| {
                match output.operand() {
                    // If the operand is a literal, use the literal directly.
                    Operand::Literal(literal) => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
                        circuit::Literal::new(circuit::Mode::Constant, literal.clone()),
                    ))),
                    // If the operand is a register, retrieve the stack value from the register.
                    Operand::Register(register) => registers.load_circuit(self, &Operand::Register(register.clone())),
                    // If the operand is the program ID, convert the program ID into an address.
                    Operand::ProgramID(program_id) => {
                        Ok(circuit::Value::Plaintext(circuit::Plaintext::from(circuit::Literal::Address(
                            circuit::Address::new(circuit::Mode::Constant, program_id.to_address()?),
                        ))))
                    }
                    // If the operand is the signer, retrieve the signer from the registers.
                    Operand::Signer => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
                        circuit::Literal::Address(registers.signer_circuit()?),
                    ))),
                    // If the operand is the caller, retrieve the caller from the registers.
                    Operand::Caller => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
                        circuit::Literal::Address(registers.caller_circuit()?),
                    ))),
                    // If the operand is the block height, throw an error.
                    Operand::BlockHeight => {
                        bail!("Illegal operation: cannot retrieve the block height in a closure scope")
                    }
                }
            })
            .collect();
        lap!(timer, "Load the outputs");

        finish!(timer);
        outputs
    }

    /// Executes a program function on the given inputs.
    ///
    /// Note: To execute a transition, do **not** call this method. Instead, call `Process::execute`.
    ///
    /// # Errors
    /// This method will halt if the given inputs are not the same length as the input statements.
    #[inline]
    fn execute_function<A: circuit::Aleo<Network = N>, R: CryptoRng + Rng>(
        &self,
        mut call_stack: CallStack<N>,
        console_caller: Option<ProgramID<N>>,
        rng: &mut R,
    ) -> Result<Response<N>> {
        let timer = timer!("Stack::execute_function");

        // Ensure the circuit environment is clean.
        A::reset();

        // Retrieve the next request.
        let console_request = call_stack.pop()?;

        // Ensure the network ID matches.
        ensure!(
            **console_request.network_id() == N::ID,
            "Network ID mismatch. Expected {}, but found {}",
            N::ID,
            console_request.network_id()
        );

        // Determine if this is the top-level caller.
        let console_is_root = console_caller.is_none();

        // Determine the parent.
        //  - If this execution is the top-level caller, then the parent is the program ID.
        //  - If this execution is a child caller, then the parent is the caller.
        let console_parent = match console_caller {
            // If this execution is the top-level caller, then the parent is the program ID.
            None => console_request.program_id().to_address()?,
            // If this execution is a child caller, then the parent is the caller.
            Some(console_caller) => console_caller.to_address()?,
        };

        // Retrieve the function from the program.
        let function = self.get_function(console_request.function_name())?;
        // Retrieve the number of inputs.
        let num_inputs = function.inputs().len();
        // Ensure the number of inputs matches the number of input statements.
        if num_inputs != console_request.inputs().len() {
            bail!("Expected {num_inputs} inputs, found {}", console_request.inputs().len())
        }
        // Retrieve the input types.
        let input_types = function.input_types();
        // Retrieve the output types.
        let output_types = function.output_types();
        lap!(timer, "Retrieve the input and output types");

        // Ensure the inputs match their expected types.
        console_request.inputs().iter().zip_eq(&input_types).try_for_each(|(input, input_type)| {
            // Ensure the input matches the input type in the function.
            self.matches_value_type(input, input_type)
        })?;
        lap!(timer, "Verify the input types");

        // Ensure the request is well-formed.
        ensure!(console_request.verify(&input_types), "Request is invalid");
        lap!(timer, "Verify the console request");

        // Initialize the registers.
        let mut registers = Registers::new(call_stack, self.get_register_types(function.name())?.clone());

        use circuit::{Eject, Inject};

        // Inject the transition public key `tpk` as `Mode::Public`.
        let tpk = circuit::Group::<A>::new(circuit::Mode::Public, console_request.to_tpk());
        // Inject the request as `Mode::Private`.
        let request = circuit::Request::new(circuit::Mode::Private, console_request.clone());

        // Inject `is_root` as `Mode::Public`.
        let is_root = circuit::Boolean::new(circuit::Mode::Public, console_is_root);
        // Inject the parent as `Mode::Public`.
        let parent = circuit::Address::new(circuit::Mode::Public, console_parent);
        // Determine the caller.
        let caller = Ternary::ternary(&is_root, request.signer(), &parent);

        // Ensure the request has a valid signature, inputs, and transition view key.
        A::assert(request.verify(&input_types, &tpk));
        lap!(timer, "Verify the circuit request");

        // Set the transition signer.
        registers.set_signer(*console_request.signer());
        // Set the transition signer, as a circuit.
        registers.set_signer_circuit(request.signer().clone());

        // Set the transition caller.
        registers.set_caller(caller.eject_value());
        // Set the transition caller, as a circuit.
        registers.set_caller_circuit(caller);

        // Set the transition view key.
        registers.set_tvk(*console_request.tvk());
        // Set the transition view key, as a circuit.
        registers.set_tvk_circuit(request.tvk().clone());

        lap!(timer, "Initialize the registers");

        #[cfg(debug_assertions)]
        Self::log_circuit::<A, _>("Request");

        // Retrieve the number of constraints for verifying the request in the circuit.
        let num_request_constraints = A::num_constraints();

        // Retrieve the number of public variables in the circuit.
        let num_public = A::num_public();

        // Store the inputs.
        function.inputs().iter().map(|i| i.register()).zip_eq(request.inputs()).try_for_each(|(register, input)| {
            // If the circuit is in execute mode, then store the console input.
            if let CallStack::Execute(..) = registers.call_stack() {
                // Assign the console input to the register.
                registers.store(self, register, input.eject_value())?;
            }
            // Assign the circuit input to the register.
            registers.store_circuit(self, register, input.clone())
        })?;
        lap!(timer, "Store the inputs");

        // Initialize a tracker to determine if there are any function calls.
        let mut contains_function_call = false;

        // Execute the instructions.
        for instruction in function.instructions() {
            // If the circuit is in execute mode, then evaluate the instructions.
            if let CallStack::Execute(..) = registers.call_stack() {
                // Evaluate the instruction.
                let result = match instruction {
                    // If the instruction is a `call` instruction, we need to handle it separately.
                    Instruction::Call(call) => CallTrait::evaluate(call, self, &mut registers),
                    // Otherwise, evaluate the instruction normally.
                    _ => instruction.evaluate(self, &mut registers),
                };
                // If the evaluation fails, bail and return the error.
                if let Err(error) = result {
                    bail!("Failed to evaluate instruction ({instruction}): {error}");
                }
            }

            // Execute the instruction.
            let result = match instruction {
                // If the instruction is a `call` instruction, we need to handle it separately.
                Instruction::Call(call) => CallTrait::execute(call, self, &mut registers, rng),
                // Otherwise, execute the instruction normally.
                _ => instruction.execute(self, &mut registers),
            };
            // If the execution fails, bail and return the error.
            if let Err(error) = result {
                bail!("Failed to execute instruction ({instruction}): {error}");
            }

            // If the instruction was a function call, then set the tracker to `true`.
            if let Instruction::Call(call) = instruction {
                // Check if the call is a function call.
                if call.is_function_call(self)? {
                    contains_function_call = true;
                }
            }
        }
        lap!(timer, "Execute the instructions");

        // Load the outputs.
        let output_operands = &function.outputs().iter().map(|output| output.operand()).collect::<Vec<_>>();
        let outputs = output_operands
            .iter()
            .map(|operand| {
                match operand {
                    // If the operand is a literal, use the literal directly.
                    Operand::Literal(literal) => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
                        circuit::Literal::new(circuit::Mode::Constant, literal.clone()),
                    ))),
                    // If the operand is a register, retrieve the stack value from the register.
                    Operand::Register(register) => registers.load_circuit(self, &Operand::Register(register.clone())),
                    // If the operand is the program ID, convert the program ID into an address.
                    Operand::ProgramID(program_id) => {
                        Ok(circuit::Value::Plaintext(circuit::Plaintext::from(circuit::Literal::Address(
                            circuit::Address::new(circuit::Mode::Constant, program_id.to_address()?),
                        ))))
                    }
                    // If the operand is the signer, retrieve the signer from the registers.
                    Operand::Signer => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
                        circuit::Literal::Address(registers.signer_circuit()?),
                    ))),
                    // If the operand is the caller, retrieve the caller from the registers.
                    Operand::Caller => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
                        circuit::Literal::Address(registers.caller_circuit()?),
                    ))),
                    // If the operand is the block height, throw an error.
                    Operand::BlockHeight => {
                        bail!("Illegal operation: cannot retrieve the block height in a function scope")
                    }
                }
            })
            .collect::<Result<Vec<_>>>()?;
        lap!(timer, "Load the outputs");

        // Map the output operands into registers.
        let output_registers = output_operands
            .iter()
            .map(|operand| match operand {
                Operand::Register(register) => Some(register.clone()),
                _ => None,
            })
            .collect::<Vec<_>>();

        #[cfg(debug_assertions)]
        Self::log_circuit::<A, _>(format!("Function '{}()'", function.name()));

        // Retrieve the number of constraints for executing the function in the circuit.
        let num_function_constraints = A::num_constraints().saturating_sub(num_request_constraints);

        // If the function does not contain function calls, ensure no new public variables were injected.
        if !contains_function_call {
            // Ensure the number of public variables remains the same.
            ensure!(A::num_public() == num_public, "Instructions in function injected public variables");
        }

        // Construct the response.
        let response = circuit::Response::from_outputs(
            request.network_id(),
            request.program_id(),
            request.function_name(),
            num_inputs,
            request.tvk(),
            request.tcm(),
            outputs,
            &output_types,
            &output_registers,
        );
        lap!(timer, "Construct the response");

        #[cfg(debug_assertions)]
        Self::log_circuit::<A, _>("Response");

        // Retrieve the number of constraints for verifying the response in the circuit.
        let num_response_constraints =
            A::num_constraints().saturating_sub(num_request_constraints).saturating_sub(num_function_constraints);

        #[cfg(debug_assertions)]
        Self::log_circuit::<A, _>("Complete");

        // Eject the response.
        let response = response.eject_value();

        // Ensure the outputs matches the expected value types.
        response.outputs().iter().zip_eq(&output_types).try_for_each(|(output, output_type)| {
            // Ensure the output matches its expected type.
            self.matches_value_type(output, output_type)
        })?;

        // If the circuit is in `Execute` or `PackageRun` mode, then ensure the circuit is satisfied.
        if matches!(registers.call_stack(), CallStack::Execute(..) | CallStack::PackageRun(..)) {
            // If the circuit is empty or not satisfied, then throw an error.
            ensure!(
                A::num_constraints() > 0 && A::is_satisfied(),
                "'{}/{}' is not satisfied on the given inputs ({} constraints).",
                self.program.id(),
                function.name(),
                A::num_constraints()
            );
        }

        // Eject the circuit assignment and reset the circuit.
        let assignment = A::eject_assignment_and_reset();

        // If the circuit is in `Synthesize` or `Execute` mode, synthesize the circuit key, if it does not exist.
        if matches!(registers.call_stack(), CallStack::Synthesize(..))
            || matches!(registers.call_stack(), CallStack::Execute(..))
        {
            // If the proving key does not exist, then synthesize it.
            if !self.contains_proving_key(function.name()) {
                // Add the circuit key to the mapping.
                self.synthesize_from_assignment(function.name(), &assignment)?;
                lap!(timer, "Synthesize the {} circuit key", function.name());
            }
        }
        // If the circuit is in `Authorize` mode, then save the transition.
        if let CallStack::Authorize(_, _, authorization) = registers.call_stack() {
            // Construct the transition.
            let transition = Transition::from(&console_request, &response, &output_types, &output_registers)?;
            // Add the transition to the authorization.
            authorization.insert_transition(transition)?;
            lap!(timer, "Save the transition");
        }
        // If the circuit is in `CheckDeployment` mode, then save the assignment.
        else if let CallStack::CheckDeployment(_, _, ref assignments) = registers.call_stack() {
            // Construct the call metrics.
            let metrics = CallMetrics {
                program_id: *self.program_id(),
                function_name: *function.name(),
                num_instructions: function.instructions().len(),
                num_request_constraints,
                num_function_constraints,
                num_response_constraints,
            };
            // Add the assignment to the assignments.
            assignments.write().push((assignment, metrics));
            lap!(timer, "Save the circuit assignment");
        }
        // If the circuit is in `Execute` mode, then execute the circuit into a transition.
        else if let CallStack::Execute(_, ref trace) = registers.call_stack() {
            registers.ensure_console_and_circuit_registers_match()?;

            // Construct the transition.
            let transition = Transition::from(&console_request, &response, &output_types, &output_registers)?;

            // Retrieve the proving key.
            let proving_key = self.get_proving_key(function.name())?;
            // Construct the call metrics.
            let metrics = CallMetrics {
                program_id: *self.program_id(),
                function_name: *function.name(),
                num_instructions: function.instructions().len(),
                num_request_constraints,
                num_function_constraints,
                num_response_constraints,
            };

            // Add the transition to the trace.
            trace.write().insert_transition(
                console_request.input_ids(),
                &transition,
                (proving_key, assignment),
                metrics,
            )?;
        }
        // If the circuit is in `PackageRun` mode, then save the assignment.
        else if let CallStack::PackageRun(_, _, ref assignments) = registers.call_stack() {
            // Construct the call metrics.
            let metrics = CallMetrics {
                program_id: *self.program_id(),
                function_name: *function.name(),
                num_instructions: function.instructions().len(),
                num_request_constraints,
                num_function_constraints,
                num_response_constraints,
            };
            // Add the assignment to the assignments.
            assignments.write().push((assignment, metrics));
            lap!(timer, "Save the circuit assignment");
        }

        finish!(timer);

        // Return the response.
        Ok(response)
    }
}

impl<N: Network> Stack<N> {
    /// Prints the current state of the circuit.
    #[cfg(debug_assertions)]
    pub(crate) fn log_circuit<A: circuit::Aleo<Network = N>, S: Into<String>>(scope: S) {
        use colored::Colorize;

        // Determine if the circuit is satisfied.
        let is_satisfied = if A::is_satisfied() { "✅".green() } else { "❌".red() };
        // Determine the count.
        let (num_constant, num_public, num_private, num_constraints, num_nonzeros) = A::count();

        // Print the log.
        println!(
            "{is_satisfied} {:width$} (Constant: {num_constant}, Public: {num_public}, Private: {num_private}, Constraints: {num_constraints}, NonZeros: {num_nonzeros:?})",
            scope.into().bold(),
            width = 20
        );
    }
}