1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<N: Network> StackExecute<N> for Stack<N> {
/// Executes a program closure on the given inputs.
///
/// # Errors
/// This method will halt if the given inputs are not the same length as the input statements.
#[inline]
fn execute_closure<A: circuit::Aleo<Network = N>>(
&self,
closure: &Closure<N>,
inputs: &[circuit::Value<A>],
call_stack: CallStack<N>,
signer: circuit::Address<A>,
caller: circuit::Address<A>,
tvk: circuit::Field<A>,
) -> Result<Vec<circuit::Value<A>>> {
let timer = timer!("Stack::execute_closure");
// Ensure the call stack is not `Evaluate`.
ensure!(!matches!(call_stack, CallStack::Evaluate(..)), "Illegal operation: cannot evaluate in execute mode");
// Ensure the number of inputs matches the number of input statements.
if closure.inputs().len() != inputs.len() {
bail!("Expected {} inputs, found {}", closure.inputs().len(), inputs.len())
}
lap!(timer, "Check the number of inputs");
// Retrieve the number of public variables in the circuit.
let num_public = A::num_public();
// Initialize the registers.
let mut registers = Registers::new(call_stack, self.get_register_types(closure.name())?.clone());
// Set the transition signer, as a circuit.
registers.set_signer_circuit(signer);
// Set the transition caller, as a circuit.
registers.set_caller_circuit(caller);
// Set the transition view key, as a circuit.
registers.set_tvk_circuit(tvk);
lap!(timer, "Initialize the registers");
// Store the inputs.
closure.inputs().iter().map(|i| i.register()).zip_eq(inputs).try_for_each(|(register, input)| {
// If the circuit is in execute mode, then store the console input.
if let CallStack::Execute(..) = registers.call_stack() {
use circuit::Eject;
// Assign the console input to the register.
registers.store(self, register, input.eject_value())?;
}
// Assign the circuit input to the register.
registers.store_circuit(self, register, input.clone())
})?;
lap!(timer, "Store the inputs");
// Execute the instructions.
for instruction in closure.instructions() {
// If the circuit is in execute mode, then evaluate the instructions.
if let CallStack::Execute(..) = registers.call_stack() {
// If the evaluation fails, bail and return the error.
if let Err(error) = instruction.evaluate(self, &mut registers) {
bail!("Failed to evaluate instruction ({instruction}): {error}");
}
}
// Execute the instruction.
instruction.execute(self, &mut registers)?;
}
lap!(timer, "Execute the instructions");
// Ensure the number of public variables remains the same.
ensure!(A::num_public() == num_public, "Illegal closure operation: instructions injected public variables");
use circuit::Inject;
// Load the outputs.
let outputs = closure
.outputs()
.iter()
.map(|output| {
match output.operand() {
// If the operand is a literal, use the literal directly.
Operand::Literal(literal) => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
circuit::Literal::new(circuit::Mode::Constant, literal.clone()),
))),
// If the operand is a register, retrieve the stack value from the register.
Operand::Register(register) => registers.load_circuit(self, &Operand::Register(register.clone())),
// If the operand is the program ID, convert the program ID into an address.
Operand::ProgramID(program_id) => {
Ok(circuit::Value::Plaintext(circuit::Plaintext::from(circuit::Literal::Address(
circuit::Address::new(circuit::Mode::Constant, program_id.to_address()?),
))))
}
// If the operand is the signer, retrieve the signer from the registers.
Operand::Signer => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
circuit::Literal::Address(registers.signer_circuit()?),
))),
// If the operand is the caller, retrieve the caller from the registers.
Operand::Caller => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
circuit::Literal::Address(registers.caller_circuit()?),
))),
// If the operand is the block height, throw an error.
Operand::BlockHeight => {
bail!("Illegal operation: cannot retrieve the block height in a closure scope")
}
}
})
.collect();
lap!(timer, "Load the outputs");
finish!(timer);
outputs
}
/// Executes a program function on the given inputs.
///
/// Note: To execute a transition, do **not** call this method. Instead, call `Process::execute`.
///
/// # Errors
/// This method will halt if the given inputs are not the same length as the input statements.
#[inline]
fn execute_function<A: circuit::Aleo<Network = N>, R: CryptoRng + Rng>(
&self,
mut call_stack: CallStack<N>,
console_caller: Option<ProgramID<N>>,
rng: &mut R,
) -> Result<Response<N>> {
let timer = timer!("Stack::execute_function");
// Ensure the circuit environment is clean.
A::reset();
// Retrieve the next request.
let console_request = call_stack.pop()?;
// Ensure the network ID matches.
ensure!(
**console_request.network_id() == N::ID,
"Network ID mismatch. Expected {}, but found {}",
N::ID,
console_request.network_id()
);
// Determine if this is the top-level caller.
let console_is_root = console_caller.is_none();
// Determine the parent.
// - If this execution is the top-level caller, then the parent is the program ID.
// - If this execution is a child caller, then the parent is the caller.
let console_parent = match console_caller {
// If this execution is the top-level caller, then the parent is the program ID.
None => console_request.program_id().to_address()?,
// If this execution is a child caller, then the parent is the caller.
Some(console_caller) => console_caller.to_address()?,
};
// Retrieve the function from the program.
let function = self.get_function(console_request.function_name())?;
// Retrieve the number of inputs.
let num_inputs = function.inputs().len();
// Ensure the number of inputs matches the number of input statements.
if num_inputs != console_request.inputs().len() {
bail!("Expected {num_inputs} inputs, found {}", console_request.inputs().len())
}
// Retrieve the input types.
let input_types = function.input_types();
// Retrieve the output types.
let output_types = function.output_types();
lap!(timer, "Retrieve the input and output types");
// Ensure the inputs match their expected types.
console_request.inputs().iter().zip_eq(&input_types).try_for_each(|(input, input_type)| {
// Ensure the input matches the input type in the function.
self.matches_value_type(input, input_type)
})?;
lap!(timer, "Verify the input types");
// Ensure the request is well-formed.
ensure!(console_request.verify(&input_types), "Request is invalid");
lap!(timer, "Verify the console request");
// Initialize the registers.
let mut registers = Registers::new(call_stack, self.get_register_types(function.name())?.clone());
use circuit::{Eject, Inject};
// Inject the transition public key `tpk` as `Mode::Public`.
let tpk = circuit::Group::<A>::new(circuit::Mode::Public, console_request.to_tpk());
// Inject the request as `Mode::Private`.
let request = circuit::Request::new(circuit::Mode::Private, console_request.clone());
// Inject `is_root` as `Mode::Public`.
let is_root = circuit::Boolean::new(circuit::Mode::Public, console_is_root);
// Inject the parent as `Mode::Public`.
let parent = circuit::Address::new(circuit::Mode::Public, console_parent);
// Determine the caller.
let caller = Ternary::ternary(&is_root, request.signer(), &parent);
// Ensure the request has a valid signature, inputs, and transition view key.
A::assert(request.verify(&input_types, &tpk));
lap!(timer, "Verify the circuit request");
// Set the transition signer.
registers.set_signer(*console_request.signer());
// Set the transition signer, as a circuit.
registers.set_signer_circuit(request.signer().clone());
// Set the transition caller.
registers.set_caller(caller.eject_value());
// Set the transition caller, as a circuit.
registers.set_caller_circuit(caller);
// Set the transition view key.
registers.set_tvk(*console_request.tvk());
// Set the transition view key, as a circuit.
registers.set_tvk_circuit(request.tvk().clone());
lap!(timer, "Initialize the registers");
#[cfg(debug_assertions)]
Self::log_circuit::<A, _>("Request");
// Retrieve the number of constraints for verifying the request in the circuit.
let num_request_constraints = A::num_constraints();
// Retrieve the number of public variables in the circuit.
let num_public = A::num_public();
// Store the inputs.
function.inputs().iter().map(|i| i.register()).zip_eq(request.inputs()).try_for_each(|(register, input)| {
// If the circuit is in execute mode, then store the console input.
if let CallStack::Execute(..) = registers.call_stack() {
// Assign the console input to the register.
registers.store(self, register, input.eject_value())?;
}
// Assign the circuit input to the register.
registers.store_circuit(self, register, input.clone())
})?;
lap!(timer, "Store the inputs");
// Initialize a tracker to determine if there are any function calls.
let mut contains_function_call = false;
// Execute the instructions.
for instruction in function.instructions() {
// If the circuit is in execute mode, then evaluate the instructions.
if let CallStack::Execute(..) = registers.call_stack() {
// Evaluate the instruction.
let result = match instruction {
// If the instruction is a `call` instruction, we need to handle it separately.
Instruction::Call(call) => CallTrait::evaluate(call, self, &mut registers),
// Otherwise, evaluate the instruction normally.
_ => instruction.evaluate(self, &mut registers),
};
// If the evaluation fails, bail and return the error.
if let Err(error) = result {
bail!("Failed to evaluate instruction ({instruction}): {error}");
}
}
// Execute the instruction.
let result = match instruction {
// If the instruction is a `call` instruction, we need to handle it separately.
Instruction::Call(call) => CallTrait::execute(call, self, &mut registers, rng),
// Otherwise, execute the instruction normally.
_ => instruction.execute(self, &mut registers),
};
// If the execution fails, bail and return the error.
if let Err(error) = result {
bail!("Failed to execute instruction ({instruction}): {error}");
}
// If the instruction was a function call, then set the tracker to `true`.
if let Instruction::Call(call) = instruction {
// Check if the call is a function call.
if call.is_function_call(self)? {
contains_function_call = true;
}
}
}
lap!(timer, "Execute the instructions");
// Load the outputs.
let output_operands = &function.outputs().iter().map(|output| output.operand()).collect::<Vec<_>>();
let outputs = output_operands
.iter()
.map(|operand| {
match operand {
// If the operand is a literal, use the literal directly.
Operand::Literal(literal) => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
circuit::Literal::new(circuit::Mode::Constant, literal.clone()),
))),
// If the operand is a register, retrieve the stack value from the register.
Operand::Register(register) => registers.load_circuit(self, &Operand::Register(register.clone())),
// If the operand is the program ID, convert the program ID into an address.
Operand::ProgramID(program_id) => {
Ok(circuit::Value::Plaintext(circuit::Plaintext::from(circuit::Literal::Address(
circuit::Address::new(circuit::Mode::Constant, program_id.to_address()?),
))))
}
// If the operand is the signer, retrieve the signer from the registers.
Operand::Signer => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
circuit::Literal::Address(registers.signer_circuit()?),
))),
// If the operand is the caller, retrieve the caller from the registers.
Operand::Caller => Ok(circuit::Value::Plaintext(circuit::Plaintext::from(
circuit::Literal::Address(registers.caller_circuit()?),
))),
// If the operand is the block height, throw an error.
Operand::BlockHeight => {
bail!("Illegal operation: cannot retrieve the block height in a function scope")
}
}
})
.collect::<Result<Vec<_>>>()?;
lap!(timer, "Load the outputs");
// Map the output operands into registers.
let output_registers = output_operands
.iter()
.map(|operand| match operand {
Operand::Register(register) => Some(register.clone()),
_ => None,
})
.collect::<Vec<_>>();
#[cfg(debug_assertions)]
Self::log_circuit::<A, _>(format!("Function '{}()'", function.name()));
// Retrieve the number of constraints for executing the function in the circuit.
let num_function_constraints = A::num_constraints().saturating_sub(num_request_constraints);
// If the function does not contain function calls, ensure no new public variables were injected.
if !contains_function_call {
// Ensure the number of public variables remains the same.
ensure!(A::num_public() == num_public, "Instructions in function injected public variables");
}
// Construct the response.
let response = circuit::Response::from_outputs(
request.network_id(),
request.program_id(),
request.function_name(),
num_inputs,
request.tvk(),
request.tcm(),
outputs,
&output_types,
&output_registers,
);
lap!(timer, "Construct the response");
#[cfg(debug_assertions)]
Self::log_circuit::<A, _>("Response");
// Retrieve the number of constraints for verifying the response in the circuit.
let num_response_constraints =
A::num_constraints().saturating_sub(num_request_constraints).saturating_sub(num_function_constraints);
#[cfg(debug_assertions)]
Self::log_circuit::<A, _>("Complete");
// Eject the response.
let response = response.eject_value();
// Ensure the outputs matches the expected value types.
response.outputs().iter().zip_eq(&output_types).try_for_each(|(output, output_type)| {
// Ensure the output matches its expected type.
self.matches_value_type(output, output_type)
})?;
// If the circuit is in `Execute` or `PackageRun` mode, then ensure the circuit is satisfied.
if matches!(registers.call_stack(), CallStack::Execute(..) | CallStack::PackageRun(..)) {
// If the circuit is empty or not satisfied, then throw an error.
ensure!(
A::num_constraints() > 0 && A::is_satisfied(),
"'{}/{}' is not satisfied on the given inputs ({} constraints).",
self.program.id(),
function.name(),
A::num_constraints()
);
}
// Eject the circuit assignment and reset the circuit.
let assignment = A::eject_assignment_and_reset();
// If the circuit is in `Synthesize` or `Execute` mode, synthesize the circuit key, if it does not exist.
if matches!(registers.call_stack(), CallStack::Synthesize(..))
|| matches!(registers.call_stack(), CallStack::Execute(..))
{
// If the proving key does not exist, then synthesize it.
if !self.contains_proving_key(function.name()) {
// Add the circuit key to the mapping.
self.synthesize_from_assignment(function.name(), &assignment)?;
lap!(timer, "Synthesize the {} circuit key", function.name());
}
}
// If the circuit is in `Authorize` mode, then save the transition.
if let CallStack::Authorize(_, _, authorization) = registers.call_stack() {
// Construct the transition.
let transition = Transition::from(&console_request, &response, &output_types, &output_registers)?;
// Add the transition to the authorization.
authorization.insert_transition(transition)?;
lap!(timer, "Save the transition");
}
// If the circuit is in `CheckDeployment` mode, then save the assignment.
else if let CallStack::CheckDeployment(_, _, ref assignments) = registers.call_stack() {
// Construct the call metrics.
let metrics = CallMetrics {
program_id: *self.program_id(),
function_name: *function.name(),
num_instructions: function.instructions().len(),
num_request_constraints,
num_function_constraints,
num_response_constraints,
};
// Add the assignment to the assignments.
assignments.write().push((assignment, metrics));
lap!(timer, "Save the circuit assignment");
}
// If the circuit is in `Execute` mode, then execute the circuit into a transition.
else if let CallStack::Execute(_, ref trace) = registers.call_stack() {
registers.ensure_console_and_circuit_registers_match()?;
// Construct the transition.
let transition = Transition::from(&console_request, &response, &output_types, &output_registers)?;
// Retrieve the proving key.
let proving_key = self.get_proving_key(function.name())?;
// Construct the call metrics.
let metrics = CallMetrics {
program_id: *self.program_id(),
function_name: *function.name(),
num_instructions: function.instructions().len(),
num_request_constraints,
num_function_constraints,
num_response_constraints,
};
// Add the transition to the trace.
trace.write().insert_transition(
console_request.input_ids(),
&transition,
(proving_key, assignment),
metrics,
)?;
}
// If the circuit is in `PackageRun` mode, then save the assignment.
else if let CallStack::PackageRun(_, _, ref assignments) = registers.call_stack() {
// Construct the call metrics.
let metrics = CallMetrics {
program_id: *self.program_id(),
function_name: *function.name(),
num_instructions: function.instructions().len(),
num_request_constraints,
num_function_constraints,
num_response_constraints,
};
// Add the assignment to the assignments.
assignments.write().push((assignment, metrics));
lap!(timer, "Save the circuit assignment");
}
finish!(timer);
// Return the response.
Ok(response)
}
}
impl<N: Network> Stack<N> {
/// Prints the current state of the circuit.
#[cfg(debug_assertions)]
pub(crate) fn log_circuit<A: circuit::Aleo<Network = N>, S: Into<String>>(scope: S) {
use colored::Colorize;
// Determine if the circuit is satisfied.
let is_satisfied = if A::is_satisfied() { "✅".green() } else { "❌".red() };
// Determine the count.
let (num_constant, num_public, num_private, num_constraints, num_nonzeros) = A::count();
// Print the log.
println!(
"{is_satisfied} {:width$} (Constant: {num_constant}, Public: {num_public}, Private: {num_private}, Constraints: {num_constraints}, NonZeros: {num_nonzeros:?})",
scope.into().bold(),
width = 20
);
}
}