1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod prepare;
#[cfg(debug_assertions)]
use crate::Stack;
use console::{
network::prelude::*,
program::{InputID, StatePath, TransactionLeaf, TransitionLeaf, TransitionPath, TRANSACTION_DEPTH},
types::{Field, Group},
};
use ledger_block::{Input, Output, Transaction, Transition};
use ledger_query::QueryTrait;
use std::collections::HashMap;
#[derive(Clone, Debug)]
struct InputTask<N: Network> {
/// The commitment.
commitment: Field<N>,
/// The gamma value.
gamma: Group<N>,
/// The serial number.
serial_number: Field<N>,
/// Contains the local transaction leaf, local transition root, local transition tcm, local transition path,
/// and local transition leaf, if this input is a record from a previous local transition.
local: Option<(TransactionLeaf<N>, Field<N>, Field<N>, TransitionPath<N>, TransitionLeaf<N>)>,
}
#[derive(Clone, Debug, Default)]
pub(super) struct Inclusion<N: Network> {
/// A map of `transition IDs` to a list of `input tasks`.
input_tasks: HashMap<N::TransitionID, Vec<InputTask<N>>>,
/// A map of `commitments` to `(local transaction leaf, local transition root, local transition tcm, local transition path, local transition leaf)` pairs.
output_commitments:
HashMap<Field<N>, (TransactionLeaf<N>, Field<N>, Field<N>, TransitionPath<N>, TransitionLeaf<N>)>,
}
impl<N: Network> Inclusion<N> {
/// Initializes a new `Inclusion` instance.
pub fn new() -> Self {
Self { input_tasks: HashMap::new(), output_commitments: HashMap::new() }
}
/// Inserts the transition to build state for the inclusion task.
pub fn insert_transition(&mut self, input_ids: &[InputID<N>], transition: &Transition<N>) -> Result<()> {
// Ensure the transition inputs and input IDs are the same length.
if input_ids.len() != transition.inputs().len() {
bail!("Inclusion expected the same number of input IDs as transition inputs")
}
// Retrieve the transition index.
let transition_index = u16::try_from(self.input_tasks.len())?;
// Initialize the input tasks.
let input_tasks = self.input_tasks.entry(*transition.id()).or_default();
// Process the inputs.
for input_id in input_ids {
// Filter the inputs for records.
if let InputID::Record(commitment, gamma, serial_number, ..) = input_id {
// Add the record to the input tasks.
input_tasks.push(InputTask {
commitment: *commitment,
gamma: *gamma,
serial_number: *serial_number,
local: self.output_commitments.get(commitment).cloned(),
});
}
}
if !transition.outputs().is_empty() {
// Compute the transaction leaf.
let transaction_leaf = TransactionLeaf::new_execution(transition_index, **transition.id());
// Compute the transition root.
let transition_root = transition.to_root()?;
// Fetch the tcm.
let tcm = *transition.tcm();
// Process the outputs.
for (index, output) in transition.outputs().iter().enumerate() {
// Filter the outputs for records.
if let Output::Record(commitment, ..) = output {
// Compute the output index.
let output_index = u8::try_from(input_ids.len().saturating_add(index))?;
// Compute the transition leaf.
let transition_leaf = output.to_transition_leaf(output_index);
// Compute the transition path.
let transition_path = transition.to_path(&transition_leaf)?;
// Add the record's local Merklization to the output commitments.
self.output_commitments.insert(
*commitment,
(transaction_leaf, transition_root, tcm, transition_path, transition_leaf),
);
}
}
}
Ok(())
}
}
impl<N: Network> Inclusion<N> {
/// Returns the verifier public inputs for the given global state root and transitions.
pub fn prepare_verifier_inputs<'a>(
global_state_root: N::StateRoot,
transitions: impl ExactSizeIterator<Item = &'a Transition<N>>,
) -> Result<Vec<Vec<N::Field>>> {
// Determine the number of transitions.
let num_transitions = transitions.len();
// Initialize an empty transaction tree.
let mut transaction_tree = N::merkle_tree_bhp::<TRANSACTION_DEPTH>(&[])?;
// Initialize a vector for the batch verifier inputs.
let mut batch_verifier_inputs = vec![];
// Construct the batch verifier inputs.
for (transition_index, transition) in transitions.enumerate() {
// Retrieve the local state root.
let local_state_root = *transaction_tree.root();
// Iterate through the inputs.
for input in transition.inputs() {
// Filter the inputs for records.
if let Input::Record(serial_number, _) = input {
// Add the public inputs to the batch verifier inputs.
let verifier_inputs =
vec![N::Field::one(), **global_state_root, *local_state_root, **serial_number];
batch_verifier_inputs.push(verifier_inputs);
}
}
// If this is not the last transition, append the transaction leaf to the transaction tree.
if transition_index + 1 != num_transitions {
// Construct the transaction leaf.
let leaf = TransactionLeaf::new_execution(u16::try_from(transition_index)?, **transition.id());
// Insert the leaf into the transaction tree.
transaction_tree.append(&[leaf.to_bits_le()])?;
}
}
// Ensure the global state root is not zero.
if batch_verifier_inputs.is_empty() && *global_state_root == Field::zero() {
bail!("Inclusion expected the global state root in the execution to *not* be zero")
}
Ok(batch_verifier_inputs)
}
}
#[derive(Clone, Debug)]
pub struct InclusionAssignment<N: Network> {
pub(crate) state_path: StatePath<N>,
commitment: Field<N>,
gamma: Group<N>,
serial_number: Field<N>,
local_state_root: N::TransactionID,
is_global: bool,
}
impl<N: Network> InclusionAssignment<N> {
/// Initializes a new inclusion assignment.
pub fn new(
state_path: StatePath<N>,
commitment: Field<N>,
gamma: Group<N>,
serial_number: Field<N>,
local_state_root: N::TransactionID,
is_global: bool,
) -> Self {
Self { state_path, commitment, gamma, serial_number, local_state_root, is_global }
}
/// The circuit for state path verification.
///
/// # Diagram
/// The `[[ ]]` notation is used to denote public inputs.
/// ```ignore
/// [[ global_state_root ]] || [[ local_state_root ]]
/// | |
/// -------- is_global --------
/// |
/// state_path
/// |
/// [[ serial_number ]] := Commit( commitment || Hash( COFACTOR * gamma ) )
/// ```
pub fn to_circuit_assignment<A: circuit::Aleo<Network = N>>(&self) -> Result<circuit::Assignment<N::Field>> {
use circuit::Inject;
// Ensure the circuit environment is clean.
assert_eq!(A::count(), (0, 1, 0, 0, (0, 0, 0)));
A::reset();
// Inject the state path as `Mode::Private` (with a global state root as `Mode::Public`).
let state_path = circuit::StatePath::<A>::new(circuit::Mode::Private, self.state_path.clone());
// Inject the commitment as `Mode::Private`.
let commitment = circuit::Field::<A>::new(circuit::Mode::Private, self.commitment);
// Inject the gamma as `Mode::Private`.
let gamma = circuit::Group::<A>::new(circuit::Mode::Private, self.gamma);
// Inject the local state root as `Mode::Public`.
let local_state_root = circuit::Field::<A>::new(circuit::Mode::Public, *self.local_state_root);
// Inject the 'is_global' flag as `Mode::Private`.
let is_global = circuit::Boolean::<A>::new(circuit::Mode::Private, self.is_global);
// Inject the serial number as `Mode::Public`.
let serial_number = circuit::Field::<A>::new(circuit::Mode::Public, self.serial_number);
// Compute the candidate serial number.
let candidate_serial_number =
circuit::Record::<A, circuit::Plaintext<A>>::serial_number_from_gamma(&gamma, commitment.clone());
// Enforce that the candidate serial number is equal to the serial number.
A::assert_eq(candidate_serial_number, serial_number);
// Enforce the starting leaf is the claimed commitment.
A::assert_eq(state_path.transition_leaf().id(), commitment);
// Enforce the state path from leaf to root is correct.
A::assert(state_path.verify(&is_global, &local_state_root));
#[cfg(debug_assertions)]
Stack::log_circuit::<A, _>(&format!("State Path for {}", self.serial_number));
// Eject the assignment and reset the circuit environment.
Ok(A::eject_assignment_and_reset())
}
}