1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod prepare;

#[cfg(debug_assertions)]
use crate::Stack;

use console::{
    network::prelude::*,
    program::{InputID, StatePath, TransactionLeaf, TransitionLeaf, TransitionPath, TRANSACTION_DEPTH},
    types::{Field, Group},
};
use ledger_block::{Input, Output, Transaction, Transition};
use ledger_query::QueryTrait;

use std::collections::HashMap;

#[derive(Clone, Debug)]
struct InputTask<N: Network> {
    /// The commitment.
    commitment: Field<N>,
    /// The gamma value.
    gamma: Group<N>,
    /// The serial number.
    serial_number: Field<N>,
    /// Contains the local transaction leaf, local transition root, local transition tcm, local transition path,
    /// and local transition leaf, if this input is a record from a previous local transition.
    local: Option<(TransactionLeaf<N>, Field<N>, Field<N>, TransitionPath<N>, TransitionLeaf<N>)>,
}

#[derive(Clone, Debug, Default)]
pub(super) struct Inclusion<N: Network> {
    /// A map of `transition IDs` to a list of `input tasks`.
    input_tasks: HashMap<N::TransitionID, Vec<InputTask<N>>>,
    /// A map of `commitments` to `(local transaction leaf, local transition root, local transition tcm, local transition path, local transition leaf)` pairs.
    output_commitments:
        HashMap<Field<N>, (TransactionLeaf<N>, Field<N>, Field<N>, TransitionPath<N>, TransitionLeaf<N>)>,
}

impl<N: Network> Inclusion<N> {
    /// Initializes a new `Inclusion` instance.
    pub fn new() -> Self {
        Self { input_tasks: HashMap::new(), output_commitments: HashMap::new() }
    }

    /// Inserts the transition to build state for the inclusion task.
    pub fn insert_transition(&mut self, input_ids: &[InputID<N>], transition: &Transition<N>) -> Result<()> {
        // Ensure the transition inputs and input IDs are the same length.
        if input_ids.len() != transition.inputs().len() {
            bail!("Inclusion expected the same number of input IDs as transition inputs")
        }

        // Retrieve the transition index.
        let transition_index = u16::try_from(self.input_tasks.len())?;

        // Initialize the input tasks.
        let input_tasks = self.input_tasks.entry(*transition.id()).or_default();

        // Process the inputs.
        for input_id in input_ids {
            // Filter the inputs for records.
            if let InputID::Record(commitment, gamma, serial_number, ..) = input_id {
                // Add the record to the input tasks.
                input_tasks.push(InputTask {
                    commitment: *commitment,
                    gamma: *gamma,
                    serial_number: *serial_number,
                    local: self.output_commitments.get(commitment).cloned(),
                });
            }
        }

        if !transition.outputs().is_empty() {
            // Compute the transaction leaf.
            let transaction_leaf = TransactionLeaf::new_execution(transition_index, **transition.id());
            // Compute the transition root.
            let transition_root = transition.to_root()?;
            // Fetch the tcm.
            let tcm = *transition.tcm();

            // Process the outputs.
            for (index, output) in transition.outputs().iter().enumerate() {
                // Filter the outputs for records.
                if let Output::Record(commitment, ..) = output {
                    // Compute the output index.
                    let output_index = u8::try_from(input_ids.len().saturating_add(index))?;
                    // Compute the transition leaf.
                    let transition_leaf = output.to_transition_leaf(output_index);
                    // Compute the transition path.
                    let transition_path = transition.to_path(&transition_leaf)?;
                    // Add the record's local Merklization to the output commitments.
                    self.output_commitments.insert(
                        *commitment,
                        (transaction_leaf, transition_root, tcm, transition_path, transition_leaf),
                    );
                }
            }
        }

        Ok(())
    }
}

impl<N: Network> Inclusion<N> {
    /// Returns the verifier public inputs for the given global state root and transitions.
    pub fn prepare_verifier_inputs<'a>(
        global_state_root: N::StateRoot,
        transitions: impl ExactSizeIterator<Item = &'a Transition<N>>,
    ) -> Result<Vec<Vec<N::Field>>> {
        // Determine the number of transitions.
        let num_transitions = transitions.len();

        // Initialize an empty transaction tree.
        let mut transaction_tree = N::merkle_tree_bhp::<TRANSACTION_DEPTH>(&[])?;
        // Initialize a vector for the batch verifier inputs.
        let mut batch_verifier_inputs = vec![];

        // Construct the batch verifier inputs.
        for (transition_index, transition) in transitions.enumerate() {
            // Retrieve the local state root.
            let local_state_root = *transaction_tree.root();

            // Iterate through the inputs.
            for input in transition.inputs() {
                // Filter the inputs for records.
                if let Input::Record(serial_number, _) = input {
                    // Add the public inputs to the batch verifier inputs.
                    let verifier_inputs =
                        vec![N::Field::one(), **global_state_root, *local_state_root, **serial_number];
                    batch_verifier_inputs.push(verifier_inputs);
                }
            }

            // If this is not the last transition, append the transaction leaf to the transaction tree.
            if transition_index + 1 != num_transitions {
                // Construct the transaction leaf.
                let leaf = TransactionLeaf::new_execution(u16::try_from(transition_index)?, **transition.id());
                // Insert the leaf into the transaction tree.
                transaction_tree.append(&[leaf.to_bits_le()])?;
            }
        }

        // Ensure the global state root is not zero.
        if batch_verifier_inputs.is_empty() && *global_state_root == Field::zero() {
            bail!("Inclusion expected the global state root in the execution to *not* be zero")
        }

        Ok(batch_verifier_inputs)
    }
}

#[derive(Clone, Debug)]
pub struct InclusionAssignment<N: Network> {
    pub(crate) state_path: StatePath<N>,
    commitment: Field<N>,
    gamma: Group<N>,
    serial_number: Field<N>,
    local_state_root: N::TransactionID,
    is_global: bool,
}

impl<N: Network> InclusionAssignment<N> {
    /// Initializes a new inclusion assignment.
    pub fn new(
        state_path: StatePath<N>,
        commitment: Field<N>,
        gamma: Group<N>,
        serial_number: Field<N>,
        local_state_root: N::TransactionID,
        is_global: bool,
    ) -> Self {
        Self { state_path, commitment, gamma, serial_number, local_state_root, is_global }
    }

    /// The circuit for state path verification.
    ///
    /// # Diagram
    /// The `[[ ]]` notation is used to denote public inputs.
    /// ```ignore
    ///             [[ global_state_root ]] || [[ local_state_root ]]
    ///                        |                          |
    ///                        -------- is_global --------
    ///                                     |
    ///                                state_path
    ///                                    |
    /// [[ serial_number ]] := Commit( commitment || Hash( COFACTOR * gamma ) )
    /// ```
    pub fn to_circuit_assignment<A: circuit::Aleo<Network = N>>(&self) -> Result<circuit::Assignment<N::Field>> {
        use circuit::Inject;

        // Ensure the circuit environment is clean.
        assert_eq!(A::count(), (0, 1, 0, 0, (0, 0, 0)));
        A::reset();

        // Inject the state path as `Mode::Private` (with a global state root as `Mode::Public`).
        let state_path = circuit::StatePath::<A>::new(circuit::Mode::Private, self.state_path.clone());
        // Inject the commitment as `Mode::Private`.
        let commitment = circuit::Field::<A>::new(circuit::Mode::Private, self.commitment);
        // Inject the gamma as `Mode::Private`.
        let gamma = circuit::Group::<A>::new(circuit::Mode::Private, self.gamma);

        // Inject the local state root as `Mode::Public`.
        let local_state_root = circuit::Field::<A>::new(circuit::Mode::Public, *self.local_state_root);
        // Inject the 'is_global' flag as `Mode::Private`.
        let is_global = circuit::Boolean::<A>::new(circuit::Mode::Private, self.is_global);

        // Inject the serial number as `Mode::Public`.
        let serial_number = circuit::Field::<A>::new(circuit::Mode::Public, self.serial_number);
        // Compute the candidate serial number.
        let candidate_serial_number =
            circuit::Record::<A, circuit::Plaintext<A>>::serial_number_from_gamma(&gamma, commitment.clone());
        // Enforce that the candidate serial number is equal to the serial number.
        A::assert_eq(candidate_serial_number, serial_number);

        // Enforce the starting leaf is the claimed commitment.
        A::assert_eq(state_path.transition_leaf().id(), commitment);
        // Enforce the state path from leaf to root is correct.
        A::assert(state_path.verify(&is_global, &local_state_root));

        #[cfg(debug_assertions)]
        Stack::log_circuit::<A, _>(&format!("State Path for {}", self.serial_number));

        // Eject the assignment and reset the circuit environment.
        Ok(A::eject_assignment_and_reset())
    }
}