1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

mod call_metrics;
pub use call_metrics::*;

mod inclusion;
pub use inclusion::*;

use circuit::Assignment;
use console::{
    network::prelude::*,
    program::{InputID, Locator},
};
use ledger_block::{Execution, Fee, Transition};
use ledger_query::QueryTrait;
use synthesizer_snark::{Proof, ProvingKey, VerifyingKey};

use once_cell::sync::OnceCell;
use std::collections::HashMap;

#[derive(Clone, Debug, Default)]
pub struct Trace<N: Network> {
    /// The list of transitions.
    transitions: Vec<Transition<N>>,
    /// A map of locators to (proving key, assignments) pairs.
    transition_tasks: HashMap<Locator<N>, (ProvingKey<N>, Vec<Assignment<N::Field>>)>,
    /// A tracker for all inclusion tasks.
    inclusion_tasks: Inclusion<N>,
    /// A list of call metrics.
    call_metrics: Vec<CallMetrics<N>>,

    /// A tracker for the inclusion assignments.
    inclusion_assignments: OnceCell<Vec<InclusionAssignment<N>>>,
    /// A tracker for the global state root.
    global_state_root: OnceCell<N::StateRoot>,
}

impl<N: Network> Trace<N> {
    /// Initializes a new trace.
    pub fn new() -> Self {
        Self {
            transitions: Vec::new(),
            transition_tasks: HashMap::new(),
            inclusion_tasks: Inclusion::new(),
            inclusion_assignments: OnceCell::new(),
            global_state_root: OnceCell::new(),
            call_metrics: Vec::new(),
        }
    }

    /// Returns the list of transitions.
    pub fn transitions(&self) -> &[Transition<N>] {
        &self.transitions
    }

    /// Returns the call metrics.
    pub fn call_metrics(&self) -> &[CallMetrics<N>] {
        &self.call_metrics
    }
}

impl<N: Network> Trace<N> {
    /// Inserts the transition into the trace.
    pub fn insert_transition(
        &mut self,
        input_ids: &[InputID<N>],
        transition: &Transition<N>,
        (proving_key, assignment): (ProvingKey<N>, Assignment<N::Field>),
        metrics: CallMetrics<N>,
    ) -> Result<()> {
        // Ensure the inclusion assignments and global state root have not been set.
        ensure!(self.inclusion_assignments.get().is_none());
        ensure!(self.global_state_root.get().is_none());

        // Insert the transition into the inclusion tasks.
        self.inclusion_tasks.insert_transition(input_ids, transition)?;

        // Construct the locator.
        let locator = Locator::new(*transition.program_id(), *transition.function_name());
        // Insert the assignment (and proving key if the entry does not exist), for the specified locator.
        self.transition_tasks.entry(locator).or_insert((proving_key, vec![])).1.push(assignment);
        // Insert the transition into the list.
        self.transitions.push(transition.clone());
        // Insert the call metrics into the list.
        self.call_metrics.push(metrics);

        Ok(())
    }
}

impl<N: Network> Trace<N> {
    /// Returns `true` if the trace is for a fee transition.
    pub fn is_fee(&self) -> bool {
        self.is_fee_private() || self.is_fee_public()
    }

    /// Returns `true` if the trace is for a private fee transition.
    pub fn is_fee_private(&self) -> bool {
        // If there is 1 transition, check if the transition is a fee transition.
        self.transitions.len() == 1 && self.transitions[0].is_fee_private()
    }

    /// Returns `true` if the trace is for a public fee transition.
    pub fn is_fee_public(&self) -> bool {
        // If there is 1 transition, check if the transition is a fee transition.
        self.transitions.len() == 1 && self.transitions[0].is_fee_public()
    }
}

impl<N: Network> Trace<N> {
    /// Returns the inclusion assignments and global state root for the current transition(s).
    pub fn prepare(&mut self, query: impl QueryTrait<N>) -> Result<()> {
        // Compute the inclusion assignments.
        let (inclusion_assignments, global_state_root) = self.inclusion_tasks.prepare(&self.transitions, query)?;
        // Store the inclusion assignments and global state root.
        self.inclusion_assignments
            .set(inclusion_assignments)
            .map_err(|_| anyhow!("Failed to set inclusion assignments"))?;
        self.global_state_root.set(global_state_root).map_err(|_| anyhow!("Failed to set global state root"))?;
        Ok(())
    }

    /// Returns the inclusion assignments and global state root for the current transition(s).
    #[cfg(feature = "async")]
    pub async fn prepare_async(&mut self, query: impl QueryTrait<N>) -> Result<()> {
        // Compute the inclusion assignments.
        let (inclusion_assignments, global_state_root) =
            self.inclusion_tasks.prepare_async(&self.transitions, query).await?;
        // Store the inclusion assignments and global state root.
        self.inclusion_assignments
            .set(inclusion_assignments)
            .map_err(|_| anyhow!("Failed to set inclusion assignments"))?;
        self.global_state_root.set(global_state_root).map_err(|_| anyhow!("Failed to set global state root"))?;
        Ok(())
    }

    /// Returns a new execution with a proof, for the current inclusion assignments and global state root.
    pub fn prove_execution<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(
        &self,
        locator: &str,
        rng: &mut R,
    ) -> Result<Execution<N>> {
        // Ensure this is not a fee.
        ensure!(!self.is_fee(), "The trace cannot call 'prove_execution' for a fee type");
        // Ensure there are no fee transitions.
        ensure!(
            self.transitions.iter().all(|transition| !(transition.is_fee_private() || transition.is_fee_public())),
            "The trace cannot prove execution for a fee, call 'prove_fee' instead"
        );
        // Retrieve the inclusion assignments.
        let inclusion_assignments =
            self.inclusion_assignments.get().ok_or_else(|| anyhow!("Inclusion assignments have not been set"))?;
        // Retrieve the global state root.
        let global_state_root =
            self.global_state_root.get().ok_or_else(|| anyhow!("Global state root has not been set"))?;
        // Construct the proving tasks.
        let proving_tasks = self.transition_tasks.values().cloned().collect();
        // Compute the proof.
        let (global_state_root, proof) =
            Self::prove_batch::<A, R>(locator, proving_tasks, inclusion_assignments, *global_state_root, rng)?;
        // Return the execution.
        Execution::from(self.transitions.iter().cloned(), global_state_root, Some(proof))
    }

    /// Returns a new fee with a proof, for the current inclusion assignment and global state root.
    pub fn prove_fee<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(&self, rng: &mut R) -> Result<Fee<N>> {
        // Ensure this is a fee.
        let is_fee_public = self.is_fee_public();
        let is_fee_private = self.is_fee_private();
        ensure!(is_fee_public || is_fee_private, "The trace cannot call 'prove_fee' for an execution type");
        // Retrieve the inclusion assignments.
        let inclusion_assignments =
            self.inclusion_assignments.get().ok_or_else(|| anyhow!("Inclusion assignments have not been set"))?;
        // Ensure the correct number of inclusion assignments are provided.
        match is_fee_public {
            true => ensure!(inclusion_assignments.is_empty(), "Expected 0 inclusion assignments for proving the fee"),
            false => ensure!(inclusion_assignments.len() == 1, "Expected 1 inclusion assignment for proving the fee"),
        }
        // Retrieve the global state root.
        let global_state_root =
            self.global_state_root.get().ok_or_else(|| anyhow!("Global state root has not been set"))?;
        // Retrieve the fee transition.
        let fee_transition = &self.transitions[0];
        // Construct the proving tasks.
        let proving_tasks = self.transition_tasks.values().cloned().collect();
        // Compute the proof.
        let (global_state_root, proof) = Self::prove_batch::<A, R>(
            "credits.aleo/fee (private or public)",
            proving_tasks,
            inclusion_assignments,
            *global_state_root,
            rng,
        )?;
        // Return the fee.
        Ok(Fee::from_unchecked(fee_transition.clone(), global_state_root, Some(proof)))
    }

    /// Checks the proof for the execution.
    /// Note: This does *not* check that the global state root exists in the ledger.
    pub fn verify_execution_proof(
        locator: &str,
        verifier_inputs: Vec<(VerifyingKey<N>, Vec<Vec<N::Field>>)>,
        execution: &Execution<N>,
    ) -> Result<()> {
        // Retrieve the global state root.
        let global_state_root = execution.global_state_root();
        // Ensure the global state root is not zero.
        if global_state_root == N::StateRoot::default() {
            bail!("Inclusion expected the global state root in the execution to *not* be zero")
        }
        // Retrieve the proof.
        let Some(proof) = execution.proof() else { bail!("Expected the execution to contain a proof") };
        // Verify the execution proof.
        match Self::verify_batch(locator, verifier_inputs, global_state_root, execution.transitions(), proof) {
            Ok(()) => Ok(()),
            Err(e) => bail!("Execution is invalid - {e}"),
        }
    }

    /// Checks the proof for the fee.
    /// Note: This does *not* check that the global state root exists in the ledger.
    pub fn verify_fee_proof(verifier_inputs: (VerifyingKey<N>, Vec<Vec<N::Field>>), fee: &Fee<N>) -> Result<()> {
        // Retrieve the global state root.
        let global_state_root = fee.global_state_root();
        // Ensure the global state root is not zero.
        if global_state_root == N::StateRoot::default() {
            bail!("Inclusion expected the global state root in the fee to *not* be zero")
        }
        // Retrieve the proof.
        let Some(proof) = fee.proof() else { bail!("Expected the fee to contain a proof") };
        // Verify the fee proof.
        match Self::verify_batch(
            "credits.aleo/fee (private or public)",
            vec![verifier_inputs],
            global_state_root,
            [fee.transition()].into_iter(),
            proof,
        ) {
            Ok(()) => Ok(()),
            Err(e) => bail!("Fee is invalid - {e}"),
        }
    }
}

impl<N: Network> Trace<N> {
    /// Returns the global state root and proof for the given assignments.
    fn prove_batch<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(
        locator: &str,
        mut proving_tasks: Vec<(ProvingKey<N>, Vec<Assignment<N::Field>>)>,
        inclusion_assignments: &[InclusionAssignment<N>],
        global_state_root: N::StateRoot,
        rng: &mut R,
    ) -> Result<(N::StateRoot, Proof<N>)> {
        // Ensure the global state root is not zero.
        // Note: To protect user privacy, even when there are *no* inclusion assignments,
        // the user must provide a real global state root (which is checked in consensus).
        if global_state_root == N::StateRoot::default() {
            bail!("Inclusion expected the global state root in the execution to *not* be zero")
        }

        // Initialize a vector for the batch inclusion assignments.
        let mut batch_inclusions = Vec::with_capacity(inclusion_assignments.len());

        for assignment in inclusion_assignments.iter() {
            // Ensure the global state root is the same across iterations.
            if global_state_root != assignment.state_path.global_state_root() {
                bail!("Inclusion expected the global state root to be the same across iterations")
            }
            // Add the assignment to the assignments.
            batch_inclusions.push(assignment.to_circuit_assignment::<A>()?);
        }

        if !batch_inclusions.is_empty() {
            // Fetch the inclusion proving key.
            let proving_key = ProvingKey::<N>::new(N::inclusion_proving_key().clone());
            // Insert the inclusion proving key and assignments.
            proving_tasks.push((proving_key, batch_inclusions));
        }

        // Compute the proof.
        let proof = ProvingKey::prove_batch(locator, &proving_tasks, rng)?;
        // Return the global state root and proof.
        Ok((global_state_root, proof))
    }

    /// Checks the proof for the given inputs.
    /// Note: This does *not* check that the global state root exists in the ledger.
    fn verify_batch<'a>(
        locator: &str,
        mut verifier_inputs: Vec<(VerifyingKey<N>, Vec<Vec<N::Field>>)>,
        global_state_root: N::StateRoot,
        transitions: impl ExactSizeIterator<Item = &'a Transition<N>>,
        proof: &Proof<N>,
    ) -> Result<()> {
        // Construct the batch of inclusion verifier inputs.
        let batch_inclusion_inputs = Inclusion::prepare_verifier_inputs(global_state_root, transitions)?;
        // Insert the batch of inclusion verifier inputs to the verifier inputs.
        if !batch_inclusion_inputs.is_empty() {
            // Fetch the inclusion verifying key.
            let verifying_key = VerifyingKey::<N>::new(N::inclusion_verifying_key().clone());
            // Insert the inclusion verifier inputs.
            verifier_inputs.push((verifying_key, batch_inclusion_inputs));
        }
        // Verify the proof.
        match VerifyingKey::verify_batch(locator, verifier_inputs, proof) {
            true => Ok(()),
            false => bail!("Failed to verify proof"),
        }
    }
}