1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<N: Network> Process<N> {
/// Verifies the given execution is valid.
/// Note: This does *not* check that the global state root exists in the ledger.
#[inline]
pub fn verify_execution(&self, execution: &Execution<N>) -> Result<()> {
let timer = timer!("Process::verify_execution");
// Ensure the execution contains transitions.
ensure!(!execution.is_empty(), "There are no transitions in the execution");
// Ensure the number of transitions matches the program function.
let locator = {
// Retrieve the transition (without popping it).
let transition = execution.peek()?;
// Retrieve the stack.
let stack = self.get_stack(transition.program_id())?;
// Ensure the number of calls matches the number of transitions.
let number_of_calls = stack.get_number_of_calls(transition.function_name())?;
ensure!(
number_of_calls == execution.len(),
"The number of transitions in the execution is incorrect. Expected {number_of_calls}, but found {}",
execution.len()
);
// Output the locator of the main function.
Locator::new(*transition.program_id(), *transition.function_name()).to_string()
};
lap!(timer, "Verify the number of transitions");
// Construct the call graph of the execution.
let call_graph = self.construct_call_graph(execution)?;
// Construct the reverse call graph of the execution.
// Note: This is a mapping of the child transition ID to the parent transition ID.
let reverse_call_graph = Self::reverse_call_graph(&call_graph);
// Initialize a map of verifying keys to public inputs.
let mut verifier_inputs = HashMap::new();
// Initialize a map of transition IDs to references of the transition.
let mut transition_map = HashMap::new();
// Verify each transition.
for transition in execution.transitions() {
#[cfg(debug_assertions)]
println!("Verifying transition for {}/{}...", transition.program_id(), transition.function_name());
// Debug-mode only, as the `Transition` constructor recomputes the transition ID at initialization.
debug_assert_eq!(
**transition.id(),
N::hash_bhp512(&(transition.to_root()?, *transition.tcm()).to_bits_le())?,
"The transition ID is incorrect"
);
// Ensure the transition is not a fee transition.
let is_fee_transition = transition.is_fee_private() || transition.is_fee_public();
ensure!(!is_fee_transition, "Fee transitions are not allowed in executions");
// Ensure the number of inputs is within the allowed range.
ensure!(transition.inputs().len() <= N::MAX_INPUTS, "Transition exceeded maximum number of inputs");
// Ensure the number of outputs is within the allowed range.
ensure!(transition.outputs().len() <= N::MAX_OUTPUTS, "Transition exceeded maximum number of outputs");
// Compute the function ID as `Hash(network_id, program_id, function_name)`.
let function_id = N::hash_bhp1024(
&(
U16::<N>::new(N::ID),
transition.program_id().name(),
transition.program_id().network(),
transition.function_name(),
)
.to_bits_le(),
)?;
// Ensure each input is valid.
if transition
.inputs()
.iter()
.enumerate()
.any(|(index, input)| !input.verify(function_id, transition.tcm(), index))
{
bail!("Failed to verify a transition input")
}
lap!(timer, "Verify the inputs");
// Ensure each output is valid.
let num_inputs = transition.inputs().len();
if transition
.outputs()
.iter()
.enumerate()
.any(|(index, output)| !output.verify(function_id, transition.tcm(), num_inputs + index))
{
bail!("Failed to verify a transition output")
}
lap!(timer, "Verify the outputs");
// Retrieve the stack.
let stack = self.get_stack(transition.program_id())?;
// Retrieve the function from the stack.
let function = stack.get_function(transition.function_name())?;
// Retrieve the parent program ID.
// Note: The last transition in the execution does not have a parent, by definition.
let parent = reverse_call_graph.get(transition.id()).and_then(|tid| execution.get_program_id(tid));
// Construct the verifier inputs for the transition.
let inputs = self.to_transition_verifier_inputs(transition, parent, &call_graph, &mut transition_map)?;
lap!(timer, "Constructed the verifier inputs for a transition of {}", function.name());
// Save the verifying key and its inputs.
verifier_inputs
.entry(Locator::new(*stack.program_id(), *function.name()))
// Retrieve the verifying key, if it does not already exist.
.or_insert((stack.get_verifying_key(function.name())?, vec![]))
.1
.push(inputs);
lap!(timer, "Stored the verifier inputs for a transition of {}", function.name());
// Add the transition to the transition map.
transition_map.insert(*transition.id(), transition);
}
// Count the number of verifier instances.
let num_instances = verifier_inputs.values().map(|(_, inputs)| inputs.len()).sum::<usize>();
// Ensure the number of instances matches the number of transitions.
ensure!(num_instances == execution.transitions().len(), "The number of verifier instances is incorrect");
// Construct the list of verifier inputs.
let verifier_inputs: Vec<_> = verifier_inputs.values().cloned().collect();
// Verify the execution proof.
Trace::verify_execution_proof(&locator, verifier_inputs, execution)?;
lap!(timer, "Verify the proof");
finish!(timer);
Ok(())
}
}
impl<N: Network> Process<N> {
/// Returns the public inputs to verify the proof for the given transition.
fn to_transition_verifier_inputs(
&self,
transition: &Transition<N>,
parent: Option<&ProgramID<N>>,
call_graph: &HashMap<N::TransitionID, Vec<N::TransitionID>>,
transition_map: &mut HashMap<N::TransitionID, &Transition<N>>,
) -> Result<Vec<N::Field>> {
// Compute the x- and y-coordinate of `tpk`.
let (tpk_x, tpk_y) = transition.tpk().to_xy_coordinates();
// Determine the value of `is_root` and `parent`.
let (is_root, parent) = match parent {
// If there is a parent, then `is_root` is `0` and `parent` is the parent program ID.
Some(program_id) => (Field::<N>::zero(), *program_id),
// If there is no parent, then `is_root` is `1` and `parent` is the root program ID.
None => (Field::one(), *transition.program_id()),
};
// Compute the x- and y-coordinate of `parent`.
let (parent_x, parent_y) = parent.to_address()?.to_xy_coordinates();
// [Inputs] Construct the verifier inputs to verify the proof.
let mut inputs = vec![N::Field::one(), *tpk_x, *tpk_y, **transition.tcm()];
// [Inputs] Extend the verifier inputs with the input IDs.
inputs.extend(transition.inputs().iter().flat_map(|input| input.verifier_inputs()));
// [Inputs] Extend the verifier inputs with the public inputs for 'self.caller'.
inputs.extend([*is_root, *parent_x, *parent_y]);
// If there are function calls, append their inputs and outputs.
for transition_id in call_graph.get(transition.id()).unwrap() {
// Note: This unwrap is safe, as we are processing transitions in post-order,
// which implies that all child transition IDs have been added to `transition_map`.
let transition: &&Transition<N> = transition_map.get(transition_id).unwrap();
// [Inputs] Extend the verifier inputs with the transition commitment of the external call.
inputs.extend([**transition.tcm()]);
// [Inputs] Extend the verifier inputs with the input IDs of the external call.
inputs.extend(transition.inputs().iter().flat_map(|input| input.verifier_inputs()));
// [Inputs] Extend the verifier inputs with the output IDs of the external call.
inputs.extend(transition.output_ids().map(|id| **id));
}
// [Inputs] Extend the verifier inputs with the output IDs.
inputs.extend(transition.outputs().iter().flat_map(|output| output.verifier_inputs()));
#[cfg(debug_assertions)]
println!("Transition public inputs ({} elements): {:#?}", inputs.len(), inputs);
Ok(inputs)
}
}
impl<N: Network> Process<N> {
// A helper function to construct a call graph from an execution.
//
// The call graph represents a mapping of parent transition IDs to child transition IDs,
// in the order that they were called.
//
// Suppose we have the following call structure.
// The functions are invoked in the following order:
// "three.aleo/a"
// --> "two.aleo/b"
// --> "zero.aleo/c"
// --> "zero.aleo/c"
// --> "one.aleo/d"
// --> "zero.aleo/c"
// The order of the transitions in the `Execution` is:
// - [c, b, c, c, d, a]
// However, the `Execution` only provides `Transition`s and not the call graph.
// In other words, we do not know which transitions were invoked by which transitions.
// Note that transition names are insufficient to reconstruct the call graph, since the same function can be invoked multiple times, in different ways.
//
// In order to reconstruct the call graph, we:
// - Iterate over the call structure in reverse post-order. The ordering is maintained by the `traversal_stack`.
// - Process each transition in the `Execution` in reverse, assigning its transition ID to the corresponding function call.
pub fn construct_call_graph(
&self,
execution: &Execution<N>,
) -> Result<HashMap<N::TransitionID, Vec<N::TransitionID>>> {
// Metadata for each transition the execution.
struct TransitionMetadata<N: Network> {
uid: usize,
pid: ProgramID<N>,
fname: Identifier<N>,
tid: Option<N::TransitionID>,
children: Option<Vec<usize>>,
}
impl<N: Network> TransitionMetadata<N> {
fn new(counter: &mut usize, pid: ProgramID<N>, fname: Identifier<N>, tid: Option<N::TransitionID>) -> Self {
let uid = *counter;
*counter += 1;
Self { uid, pid, fname, tid, children: None }
}
/// Returns 'true' if the subgraph starting from this transition has been fully-indexed.
fn is_complete(&self) -> bool {
self.tid.is_some() && self.children.is_some()
}
}
// A helper function to update the call graph, given transition metadata.
let update_call_graph = |metadata: TransitionMetadata<N>,
call_graph: &mut HashMap<N::TransitionID, Vec<N::TransitionID>>,
uid_to_tid: &mut HashMap<usize, N::TransitionID>|
-> Result<()> {
// Check that the transition metadata is complete.
ensure!(metadata.is_complete(), "Invalid traversal - transition metadata is incomplete");
// Update the call graph.
call_graph.insert(
metadata.tid.unwrap(),
metadata
.children // Safe to unwrap, since the metadata is complete.
.unwrap()
.into_iter()
.map(|uid| match uid_to_tid.get(&uid) {
Some(tid) => Ok(*tid),
None => bail!("Invalid traversal - missing 'tid' for uid '{uid}'"),
})
.collect::<Result<Vec<_>, _>>()?,
);
// Update the UID to TID mapping.
uid_to_tid.insert(metadata.uid, metadata.tid.unwrap());
Ok(())
};
// Initialize a call graph, which is a map of transition IDs to the transition IDs it calls.
let mut call_graph = HashMap::new();
// Initialize a mapping from UIDs to transition IDs.
let mut uid_to_tid = HashMap::new();
// Initialize a stack to track transition metadata, while traversing the call graph.
let mut traversal_stack: Vec<TransitionMetadata<N>> = Vec::new();
// Initialize a counter to provide unique IDs for each transition.
let mut counter = 0;
// Iterate over each transition in reverse post-order, and populate the call graph.
for transition in execution.transitions().rev() {
// Now process the current `transition`.
// At this point, the algorithm must maintain the following invariant:
// - The stack is either empty, or the top entry is incomplete.
match traversal_stack.last_mut() {
// If the stack is empty, then push the `transition` to the top of the stack.
None => {
traversal_stack.push(TransitionMetadata::new(
&mut counter,
*transition.program_id(),
*transition.function_name(),
Some(*transition.id()),
));
}
// If the stack is not empty, then add the current transition ID to the entry.
Some(head) => match head.pid == *transition.program_id() && head.fname == *transition.function_name() {
true => head.tid = Some(*transition.id()),
false => bail!("Invalid traversal - unexpected transition in the execution"),
},
}
// Process the entry at the top of the stack. By the previous step, this entry has a transition ID.
// Note this unwrap is safe, since we either pushed an entry to the stack or modified the one at the top of the stack.
let top = traversal_stack.last().unwrap();
// If the entry is complete, then add it to the call graph.
if top.is_complete() {
// Note this unwrap is safe, for the same reason as above.
update_call_graph(traversal_stack.pop().unwrap(), &mut call_graph, &mut uid_to_tid)?;
} else {
// Retrieve the stack.
let stack = self.get_stack(top.pid)?;
// Retrieve the function from the stack.
let function = stack.get_function(&top.fname)?;
// Collect the children of the current transition.
let mut children = Vec::new();
for instruction in function.instructions() {
if let Instruction::Call(call) = instruction {
let (pid, fname) = match call.operator() {
synthesizer_program::CallOperator::Locator(locator) => {
(locator.program_id(), locator.resource())
}
synthesizer_program::CallOperator::Resource(fname) => (&top.pid, fname),
};
// Add the child to the traversal stack, only if it is a call to a transition.
if self.get_stack(pid)?.get_function(fname).is_ok() {
children.push(TransitionMetadata::new(&mut counter, *pid, *fname, None));
}
}
}
// Add the children UIDs to the metadata.
// Note this unwrap is safe, for the same reason as above.
let top = traversal_stack.last_mut().unwrap();
let child_uids = children.iter().map(|child| child.uid).collect::<Vec<_>>();
match top.children {
None => top.children = Some(child_uids),
Some(_) => bail!("Invalid traversal - children have already been processed"),
}
// Push the children to the top of the stack.
traversal_stack.extend(children);
}
// If the stack has complete metadata entries, then remove and add them to the call graph.
while let Some(metadata) = traversal_stack.last() {
if metadata.is_complete() {
update_call_graph(traversal_stack.pop().unwrap(), &mut call_graph, &mut uid_to_tid)?;
} else {
break;
}
}
}
// Check that the the traversal completed correctly.
ensure!(traversal_stack.is_empty(), "Invalid traversal - traversal stack is not empty");
ensure!(
counter == execution.len(),
"Invalid traversal - counter does not match the number of transitions in the execution"
);
Ok(call_graph)
}
/// A helper function to reverse the call graph.
///
/// The call graph is a mapping of parent transition IDs to child transition IDs,
/// in the order that they were called.
///
/// The reverse call graph is a mapping of child transition IDs to parent transition IDs.
/// Note: Each child transition only has one parent transition, by definition.
fn reverse_call_graph(
call_graph: &HashMap<N::TransitionID, Vec<N::TransitionID>>,
) -> HashMap<N::TransitionID, N::TransitionID> {
// Initialize a map for the reverse call graph.
let mut reverse_call_graph = HashMap::new();
// Iterate over the (forward) call graph.
for (parent, children) in call_graph {
for child in children {
let result = reverse_call_graph.insert(*child, *parent);
debug_assert!(result.is_none(), "Found a child with multiple parents");
}
}
reverse_call_graph
}
}