snarkvm_synthesizer_process/stack/deploy.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
use rand::{SeedableRng, rngs::StdRng};
impl<N: Network> Stack<N> {
/// Deploys the given program ID, if it does not exist.
#[inline]
pub fn deploy<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(&self, rng: &mut R) -> Result<Deployment<N>> {
let timer = timer!("Stack::deploy");
// Ensure the program contains functions.
ensure!(!self.program.functions().is_empty(), "Program '{}' has no functions", self.program.id());
// Initialize a vector for the verifying keys and certificates.
let mut verifying_keys = Vec::with_capacity(self.program.functions().len());
for function_name in self.program.functions().keys() {
// Synthesize the proving and verifying key.
self.synthesize_key::<A, R>(function_name, rng)?;
lap!(timer, "Synthesize key for {function_name}");
// Retrieve the proving key.
let proving_key = self.get_proving_key(function_name)?;
// Retrieve the verifying key.
let verifying_key = self.get_verifying_key(function_name)?;
lap!(timer, "Retrieve the keys for {function_name}");
// Certify the circuit.
let certificate = Certificate::certify(&function_name.to_string(), &proving_key, &verifying_key)?;
lap!(timer, "Certify the circuit");
// Add the verifying key and certificate to the bundle.
verifying_keys.push((*function_name, (verifying_key, certificate)));
}
finish!(timer);
// Return the deployment.
Deployment::new(N::EDITION, self.program.clone(), verifying_keys)
}
/// Checks each function in the program on the given verifying key and certificate.
#[inline]
pub fn verify_deployment<A: circuit::Aleo<Network = N>, R: Rng + CryptoRng>(
&self,
deployment: &Deployment<N>,
rng: &mut R,
) -> Result<()> {
let timer = timer!("Stack::verify_deployment");
// Sanity Checks //
// Ensure the deployment is ordered.
deployment.check_is_ordered()?;
// Ensure the program in the stack and deployment matches.
ensure!(&self.program == deployment.program(), "The stack program does not match the deployment program");
// Check Verifying Keys //
let program_id = self.program.id();
// Check that the number of combined variables does not exceed the deployment limit.
ensure!(deployment.num_combined_variables()? <= N::MAX_DEPLOYMENT_VARIABLES);
// Check that the number of combined constraints does not exceed the deployment limit.
ensure!(deployment.num_combined_constraints()? <= N::MAX_DEPLOYMENT_CONSTRAINTS);
// Construct the call stacks and assignments used to verify the certificates.
let mut call_stacks = Vec::with_capacity(deployment.verifying_keys().len());
// The `root_tvk` is `None` when verifying the deployment of an individual circuit.
let root_tvk = None;
// The `caller` is `None` when verifying the deployment of an individual circuit.
let caller = None;
// Check that the number of functions matches the number of verifying keys.
ensure!(
deployment.program().functions().len() == deployment.verifying_keys().len(),
"The number of functions in the program does not match the number of verifying keys"
);
// Create a seeded rng to use for input value and sub-stack generation.
// This is needed to ensure that the verification results of deployments are consistent across all parties,
// because currently there is a possible flakiness due to overflows in Field to Scalar casting.
let seed = u64::from_bytes_le(&deployment.to_deployment_id()?.to_bytes_le()?[0..8])?;
let mut seeded_rng = rand_chacha::ChaChaRng::seed_from_u64(seed);
// Iterate through the program functions and construct the callstacks and corresponding assignments.
for (function, (_, (verifying_key, _))) in
deployment.program().functions().values().zip_eq(deployment.verifying_keys())
{
// Initialize a burner private key.
let burner_private_key = PrivateKey::new(rng)?;
// Compute the burner address.
let burner_address = Address::try_from(&burner_private_key)?;
// Retrieve the input types.
let input_types = function.input_types();
// Sample the inputs.
let inputs = input_types
.iter()
.map(|input_type| match input_type {
ValueType::ExternalRecord(locator) => {
// Retrieve the external stack.
let stack = self.get_external_stack(locator.program_id())?;
// Sample the input.
stack.sample_value(&burner_address, &ValueType::Record(*locator.resource()), &mut seeded_rng)
}
_ => self.sample_value(&burner_address, input_type, &mut seeded_rng),
})
.collect::<Result<Vec<_>>>()?;
lap!(timer, "Sample the inputs");
// Sample 'is_root'.
let is_root = true;
// Compute the request, with a burner private key.
let request = Request::sign(
&burner_private_key,
*program_id,
*function.name(),
inputs.into_iter(),
&input_types,
root_tvk,
is_root,
rng,
)?;
lap!(timer, "Compute the request for {}", function.name());
// Initialize the assignments.
let assignments = Assignments::<N>::default();
// Initialize the constraint limit. Account for the constraint added after synthesis that makes the Varuna zerocheck hiding.
let Some(constraint_limit) = verifying_key.circuit_info.num_constraints.checked_sub(1) else {
// Since a deployment must always pay non-zero fee, it must always have at least one constraint.
bail!("The constraint limit of 0 for function '{}' is invalid", function.name());
};
// Retrieve the variable limit.
let variable_limit = verifying_key.num_variables();
// Initialize the call stack.
let call_stack = CallStack::CheckDeployment(
vec![request],
burner_private_key,
assignments.clone(),
Some(constraint_limit as u64),
Some(variable_limit),
);
// Append the function name, callstack, and assignments.
call_stacks.push((function.name(), call_stack, assignments));
}
// Verify the certificates.
let rngs = (0..call_stacks.len()).map(|_| StdRng::from_seed(seeded_rng.gen())).collect::<Vec<_>>();
cfg_into_iter!(call_stacks).zip_eq(deployment.verifying_keys()).zip_eq(rngs).try_for_each(
|(((function_name, call_stack, assignments), (_, (verifying_key, certificate))), mut rng)| {
// Synthesize the circuit.
if let Err(err) = self.execute_function::<A, _>(call_stack, caller, root_tvk, &mut rng) {
bail!("Failed to synthesize the circuit for '{function_name}': {err}")
}
// Check the certificate.
match assignments.read().last() {
None => bail!("The assignment for function '{function_name}' is missing in '{program_id}'"),
Some((assignment, _metrics)) => {
// Ensure the certificate is valid.
if !certificate.verify(&function_name.to_string(), assignment, verifying_key) {
bail!("The certificate for function '{function_name}' is invalid in '{program_id}'")
}
}
};
Ok(())
},
)?;
finish!(timer);
Ok(())
}
}