snarkvm_synthesizer_process/stack/helpers/
matches.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<N: Network> StackMatches<N> for Stack<N> {
    /// Checks that the given value matches the layout of the value type.
    fn matches_value_type(&self, value: &Value<N>, value_type: &ValueType<N>) -> Result<()> {
        // Ensure the value matches the declared value type in the register.
        match (value, value_type) {
            (Value::Plaintext(plaintext), ValueType::Constant(plaintext_type))
            | (Value::Plaintext(plaintext), ValueType::Public(plaintext_type))
            | (Value::Plaintext(plaintext), ValueType::Private(plaintext_type)) => {
                self.matches_plaintext(plaintext, plaintext_type)
            }
            (Value::Record(record), ValueType::Record(record_name)) => self.matches_record(record, record_name),
            (Value::Record(record), ValueType::ExternalRecord(locator)) => {
                self.matches_external_record(record, locator)
            }
            (Value::Future(future), ValueType::Future(locator)) => self.matches_future(future, locator),
            _ => bail!("A value does not match its declared value type '{value_type}'"),
        }
    }

    /// Checks that the given stack value matches the layout of the register type.
    fn matches_register_type(&self, stack_value: &Value<N>, register_type: &RegisterType<N>) -> Result<()> {
        match (stack_value, register_type) {
            (Value::Plaintext(plaintext), RegisterType::Plaintext(plaintext_type)) => {
                self.matches_plaintext(plaintext, plaintext_type)
            }
            (Value::Record(record), RegisterType::Record(record_name)) => self.matches_record(record, record_name),
            (Value::Record(record), RegisterType::ExternalRecord(locator)) => {
                self.matches_external_record(record, locator)
            }
            (Value::Future(future), RegisterType::Future(locator)) => self.matches_future(future, locator),
            _ => bail!("A value does not match its declared register type '{register_type}'"),
        }
    }

    /// Checks that the given record matches the layout of the external record type.
    fn matches_external_record(&self, record: &Record<N, Plaintext<N>>, locator: &Locator<N>) -> Result<()> {
        // Retrieve the record name.
        let record_name = locator.resource();

        // Ensure the record name is valid.
        ensure!(!Program::is_reserved_keyword(record_name), "Record name '{record_name}' is reserved");

        // Retrieve the record type from the program.
        let Ok(record_type) = self.get_external_record(locator) else {
            bail!("External '{locator}' is not defined in the program")
        };

        // Ensure the record name matches.
        if record_type.name() != record_name {
            bail!("Expected external record '{record_name}', found external record '{}'", record_type.name())
        }

        self.matches_record_internal(record, record_type, 0)
    }

    /// Checks that the given record matches the layout of the record type.
    fn matches_record(&self, record: &Record<N, Plaintext<N>>, record_name: &Identifier<N>) -> Result<()> {
        // Ensure the record name is valid.
        ensure!(!Program::is_reserved_keyword(record_name), "Record name '{record_name}' is reserved");

        // Retrieve the record type from the program.
        let Ok(record_type) = self.program().get_record(record_name) else {
            bail!("Record '{record_name}' is not defined in the program")
        };

        // Ensure the record name matches.
        if record_type.name() != record_name {
            bail!("Expected record '{record_name}', found record '{}'", record_type.name())
        }

        self.matches_record_internal(record, record_type, 0)
    }

    /// Checks that the given plaintext matches the layout of the plaintext type.
    fn matches_plaintext(&self, plaintext: &Plaintext<N>, plaintext_type: &PlaintextType<N>) -> Result<()> {
        self.matches_plaintext_internal(plaintext, plaintext_type, 0)
    }

    /// Checks that the given future matches the layout of the future type.
    fn matches_future(&self, future: &Future<N>, locator: &Locator<N>) -> Result<()> {
        self.matches_future_internal(future, locator, 0)
    }
}

impl<N: Network> Stack<N> {
    /// Checks that the given record matches the layout of the record type.
    fn matches_record_internal(
        &self,
        record: &Record<N, Plaintext<N>>,
        record_type: &RecordType<N>,
        depth: usize,
    ) -> Result<()> {
        // If the depth exceeds the maximum depth, then the plaintext type is invalid.
        ensure!(depth <= N::MAX_DATA_DEPTH, "Plaintext exceeded maximum depth of {}", N::MAX_DATA_DEPTH);

        // Retrieve the record name.
        let record_name = record_type.name();
        // Ensure the record name is valid.
        ensure!(!Program::is_reserved_keyword(record_name), "Record name '{record_name}' is reserved");

        // Ensure the visibility of the record owner matches the visibility in the record type.
        ensure!(
            record.owner().is_public() == record_type.owner().is_public(),
            "Visibility of record entry 'owner' does not match"
        );
        ensure!(
            record.owner().is_private() == record_type.owner().is_private(),
            "Visibility of record entry 'owner' does not match"
        );

        // Ensure the number of record entries does not exceed the maximum.
        let num_entries = record.data().len();
        ensure!(num_entries <= N::MAX_DATA_ENTRIES, "'{record_name}' cannot exceed {} entries", N::MAX_DATA_ENTRIES);

        // Ensure the number of record entries match.
        let expected_num_entries = record_type.entries().len();
        if expected_num_entries != num_entries {
            bail!("'{record_name}' expected {expected_num_entries} entries, found {num_entries} entries")
        }

        // Ensure the record data match, in the same order.
        for (i, ((expected_name, expected_type), (entry_name, entry))) in
            record_type.entries().iter().zip_eq(record.data().iter()).enumerate()
        {
            // Ensure the entry name matches.
            if expected_name != entry_name {
                bail!("Entry '{i}' in '{record_name}' is incorrect: expected '{expected_name}', found '{entry_name}'")
            }
            // Ensure the entry name is valid.
            ensure!(!Program::is_reserved_keyword(entry_name), "Entry name '{entry_name}' is reserved");
            // Ensure the entry matches (recursive call).
            self.matches_entry_internal(record_name, entry_name, entry, expected_type, depth + 1)?;
        }

        Ok(())
    }

    /// Checks that the given entry matches the layout of the entry type.
    fn matches_entry_internal(
        &self,
        record_name: &Identifier<N>,
        entry_name: &Identifier<N>,
        entry: &Entry<N, Plaintext<N>>,
        entry_type: &EntryType<N>,
        depth: usize,
    ) -> Result<()> {
        match (entry, entry_type) {
            (Entry::Constant(plaintext), EntryType::Constant(plaintext_type))
            | (Entry::Public(plaintext), EntryType::Public(plaintext_type))
            | (Entry::Private(plaintext), EntryType::Private(plaintext_type)) => {
                match self.matches_plaintext_internal(plaintext, plaintext_type, depth) {
                    Ok(()) => Ok(()),
                    Err(error) => bail!("Invalid record entry '{record_name}.{entry_name}': {error}"),
                }
            }
            _ => bail!(
                "Type mismatch in record entry '{record_name}.{entry_name}':\n'{entry}'\n does not match\n'{entry_type}'"
            ),
        }
    }

    /// Checks that the given plaintext matches the layout of the plaintext type.
    fn matches_plaintext_internal(
        &self,
        plaintext: &Plaintext<N>,
        plaintext_type: &PlaintextType<N>,
        depth: usize,
    ) -> Result<()> {
        // If the depth exceeds the maximum depth, then the plaintext type is invalid.
        ensure!(depth <= N::MAX_DATA_DEPTH, "Plaintext exceeded maximum depth of {}", N::MAX_DATA_DEPTH);

        // Ensure the plaintext matches the plaintext definition in the program.
        match plaintext_type {
            PlaintextType::Literal(literal_type) => match plaintext {
                // If `plaintext` is a literal, it must match the literal type.
                Plaintext::Literal(literal, ..) => {
                    // Ensure the literal type matches.
                    match literal.to_type() == *literal_type {
                        true => Ok(()),
                        false => bail!("'{plaintext_type}' is invalid: expected {literal_type}, found {literal}"),
                    }
                }
                // If `plaintext` is a struct, this is a mismatch.
                Plaintext::Struct(..) => bail!("'{plaintext_type}' is invalid: expected literal, found struct"),
                // If `plaintext` is an array, this is a mismatch.
                Plaintext::Array(..) => bail!("'{plaintext_type}' is invalid: expected literal, found array"),
            },
            PlaintextType::Struct(struct_name) => {
                // Ensure the struct name is valid.
                ensure!(!Program::is_reserved_keyword(struct_name), "Struct '{struct_name}' is reserved");

                // Retrieve the struct from the program.
                let Ok(struct_) = self.program().get_struct(struct_name) else {
                    bail!("Struct '{struct_name}' is not defined in the program")
                };

                // Ensure the struct name matches.
                if struct_.name() != struct_name {
                    bail!("Expected struct '{struct_name}', found struct '{}'", struct_.name())
                }

                // Retrieve the struct members.
                let members = match plaintext {
                    Plaintext::Literal(..) => bail!("'{struct_name}' is invalid: expected struct, found literal"),
                    Plaintext::Struct(members, ..) => members,
                    Plaintext::Array(..) => bail!("'{struct_name}' is invalid: expected struct, found array"),
                };

                let num_members = members.len();
                // Ensure the number of struct members does not go below the minimum.
                ensure!(
                    num_members >= N::MIN_STRUCT_ENTRIES,
                    "'{struct_name}' cannot be less than {} entries",
                    N::MIN_STRUCT_ENTRIES
                );
                // Ensure the number of struct members does not exceed the maximum.
                ensure!(
                    num_members <= N::MAX_STRUCT_ENTRIES,
                    "'{struct_name}' cannot exceed {} entries",
                    N::MAX_STRUCT_ENTRIES
                );

                // Ensure the number of struct members match.
                let expected_num_members = struct_.members().len();
                if expected_num_members != num_members {
                    bail!("'{struct_name}' expected {expected_num_members} members, found {num_members} members")
                }

                // Ensure the struct members match, in the same order.
                for (i, ((expected_name, expected_type), (member_name, member))) in
                    struct_.members().iter().zip_eq(members.iter()).enumerate()
                {
                    // Ensure the member name matches.
                    if expected_name != member_name {
                        bail!(
                            "Member '{i}' in '{struct_name}' is incorrect: expected '{expected_name}', found '{member_name}'"
                        )
                    }
                    // Ensure the member name is valid.
                    ensure!(!Program::is_reserved_keyword(member_name), "Member name '{member_name}' is reserved");
                    // Ensure the member plaintext matches (recursive call).
                    self.matches_plaintext_internal(member, expected_type, depth + 1)?;
                }

                Ok(())
            }
            PlaintextType::Array(array_type) => match plaintext {
                // If `plaintext` is a literal, this is a mismatch.
                Plaintext::Literal(..) => bail!("'{plaintext_type}' is invalid: expected array, found literal"),
                // If `plaintext` is a struct, this is a mismatch.
                Plaintext::Struct(..) => bail!("'{plaintext_type}' is invalid: expected array, found struct"),
                // If `plaintext` is an array, it must match the array type.
                Plaintext::Array(array, ..) => {
                    // Ensure the array length matches.
                    let (actual_length, expected_length) = (array.len(), array_type.length());
                    if **expected_length as usize != actual_length {
                        bail!(
                            "'{plaintext_type}' is invalid: expected {expected_length} elements, found {actual_length} elements"
                        )
                    }
                    // Ensure the array elements match.
                    for element in array.iter() {
                        self.matches_plaintext_internal(element, array_type.next_element_type(), depth + 1)?;
                    }
                    Ok(())
                }
            },
        }
    }

    /// Checks that the given future matches the layout of the future type.
    fn matches_future_internal(&self, future: &Future<N>, locator: &Locator<N>, depth: usize) -> Result<()> {
        // If the depth exceeds the maximum depth, then the future type is invalid.
        ensure!(depth <= N::MAX_DATA_DEPTH, "Future exceeded maximum depth of {}", N::MAX_DATA_DEPTH);

        // Ensure that the program IDs match.
        ensure!(future.program_id() == locator.program_id(), "Future program ID does not match");

        // Ensure that the function names match.
        ensure!(future.function_name() == locator.resource(), "Future name does not match");

        // Retrieve the associated function.
        let function = match locator.program_id() == self.program_id() {
            true => self.get_function_ref(locator.resource())?,
            false => self.get_external_program(locator.program_id())?.get_function_ref(locator.resource())?,
        };
        // Retrieve the finalize inputs.
        let inputs = match function.finalize_logic() {
            Some(finalize_logic) => finalize_logic.inputs(),
            None => bail!("Function '{locator}' does not have a finalize block"),
        };

        // Ensure the number of arguments matches the number of inputs.
        ensure!(future.arguments().len() == inputs.len(), "Future arguments do not match");

        // Check that the arguments match the inputs.
        for (argument, input) in future.arguments().iter().zip_eq(inputs.iter()) {
            match (argument, input.finalize_type()) {
                (Argument::Plaintext(plaintext), FinalizeType::Plaintext(plaintext_type)) => {
                    self.matches_plaintext_internal(plaintext, plaintext_type, depth + 1)?
                }
                (Argument::Future(future), FinalizeType::Future(locator)) => {
                    self.matches_future_internal(future, locator, depth + 1)?
                }
                (_, input_type) => {
                    bail!("Argument type does not match input type: expected '{input_type}'")
                }
            }
        }

        Ok(())
    }
}