1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
traits::{FinalizeStoreTrait, RegistersLoad, RegistersStore, StackMatches, StackProgram},
Opcode,
Operand,
};
use console::{
network::prelude::*,
program::{Identifier, Literal, Register, Value},
types::Boolean,
};
/// A contains command, e.g. `contains accounts[r0] into r1;`.
/// Contains is `true` if a (`key`, `value`) entry exists in `mapping`, stores the result in `destination`.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Contains<N: Network> {
/// The mapping name.
mapping: Identifier<N>,
/// The key to access the mapping.
key: Operand<N>,
/// The destination register.
destination: Register<N>,
}
impl<N: Network> Contains<N> {
/// Returns the opcode.
#[inline]
pub const fn opcode() -> Opcode {
Opcode::Command("contains")
}
/// Returns the operands in the operation.
#[inline]
pub fn operands(&self) -> Vec<Operand<N>> {
vec![self.key.clone()]
}
/// Returns the mapping name.
#[inline]
pub const fn mapping_name(&self) -> &Identifier<N> {
&self.mapping
}
/// Returns the operand containing the key.
#[inline]
pub const fn key(&self) -> &Operand<N> {
&self.key
}
/// Returns the destination register.
#[inline]
pub const fn destination(&self) -> &Register<N> {
&self.destination
}
}
impl<N: Network> Contains<N> {
/// Finalizes the command.
#[inline]
pub fn finalize(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
store: &impl FinalizeStoreTrait<N>,
registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
) -> Result<()> {
// Ensure the mapping exists in storage.
if !store.contains_mapping_confirmed(stack.program_id(), &self.mapping)? {
bail!("Mapping '{}/{}' does not exist in storage", stack.program_id(), self.mapping);
}
// Load the operand as a plaintext.
let key = registers.load_plaintext(stack, &self.key)?;
// Determine if the key exists in the mapping.
let contains_key = store.contains_key_speculative(*stack.program_id(), self.mapping, &key)?;
// Assign the value to the destination register.
registers.store(stack, &self.destination, Value::from(Literal::Boolean(Boolean::new(contains_key))))?;
Ok(())
}
}
impl<N: Network> Parser for Contains<N> {
/// Parses a string into an operation.
#[inline]
fn parse(string: &str) -> ParserResult<Self> {
// Parse the whitespace and comments from the string.
let (string, _) = Sanitizer::parse(string)?;
// Parse the opcode from the string.
let (string, _) = tag(*Self::opcode())(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the mapping name from the string.
let (string, mapping) = Identifier::parse(string)?;
// Parse the "[" from the string.
let (string, _) = tag("[")(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the key operand from the string.
let (string, key) = Operand::parse(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the "]" from the string.
let (string, _) = tag("]")(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the "into" keyword from the string.
let (string, _) = tag("into")(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the destination register from the string.
let (string, destination) = Register::parse(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the ";" from the string.
let (string, _) = tag(";")(string)?;
Ok((string, Self { mapping, key, destination }))
}
}
impl<N: Network> FromStr for Contains<N> {
type Err = Error;
/// Parses a string into the command.
#[inline]
fn from_str(string: &str) -> Result<Self> {
match Self::parse(string) {
Ok((remainder, object)) => {
// Ensure the remainder is empty.
ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
// Return the object.
Ok(object)
}
Err(error) => bail!("Failed to parse string. {error}"),
}
}
}
impl<N: Network> Debug for Contains<N> {
/// Prints the command as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self, f)
}
}
impl<N: Network> Display for Contains<N> {
/// Prints the command to a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// Print the command.
write!(f, "{} ", Self::opcode())?;
// Print the mapping and key operand.
write!(f, "{}[{}] into ", self.mapping, self.key)?;
// Print the destination register.
write!(f, "{};", self.destination)
}
}
impl<N: Network> FromBytes for Contains<N> {
/// Reads the command from a buffer.
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
// Read the mapping name.
let mapping = Identifier::read_le(&mut reader)?;
// Read the key operand.
let key = Operand::read_le(&mut reader)?;
// Read the destination register.
let destination = Register::read_le(&mut reader)?;
// Return the command.
Ok(Self { mapping, key, destination })
}
}
impl<N: Network> ToBytes for Contains<N> {
/// Writes the operation to a buffer.
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
// Write the mapping name.
self.mapping.write_le(&mut writer)?;
// Write the key operand.
self.key.write_le(&mut writer)?;
// Write the destination register.
self.destination.write_le(&mut writer)
}
}
#[cfg(test)]
mod tests {
use super::*;
use console::{network::Testnet3, program::Register};
type CurrentNetwork = Testnet3;
#[test]
fn test_parse() {
let (string, contains) = Contains::<CurrentNetwork>::parse("contains account[r0] into r1;").unwrap();
assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
assert_eq!(contains.mapping, Identifier::from_str("account").unwrap());
assert_eq!(contains.operands().len(), 1, "The number of operands is incorrect");
assert_eq!(contains.key, Operand::Register(Register::Locator(0)), "The first operand is incorrect");
assert_eq!(contains.destination, Register::Locator(1), "The second operand is incorrect");
}
}