1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
impl<N: Network> FromBytes for Instruction<N> {
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
/// Creates a match statement that produces the `FromBytes` implementation for the given instruction.
///
/// ## Example
/// ```ignore
/// instruction_from_bytes_le!(self, |reader| {}, { Add, Sub, Mul, Div })
/// ```
macro_rules! instruction_from_bytes_le {
($object:expr, |$reader:ident| $_operation:block, { $( $variant:ident, )+ }) => {{
// Read the opcode index.
let index = u16::read_le(&mut $reader)?;
// Build the cases for all instructions.
if index as usize >= Instruction::<N>::OPCODES.len() {
return Err(error(format!("Failed to deserialize an instruction: invalid opcode index ({index})")));
}
$(if Instruction::<N>::OPCODES[index as usize] == $variant::<N>::opcode() {
// Read the instruction.
let instruction = $variant::read_le(&mut $reader)?;
// Return the instruction.
return Ok(Self::$variant(instruction));
})+
// If the index is out of bounds, return an error.
Err(error(format!("Failed to deserialize an instruction of opcode index '{index}'")))
}};
}
// Execute the `from_bytes_le` method.
crate::instruction!(instruction_from_bytes_le!(self, reader))
}
}
impl<N: Network> ToBytes for Instruction<N> {
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
/// Creates a match statement that produces the `ToBytes` implementation for the given instruction.
///
/// ## Example
/// ```ignore
/// instruction_to_bytes_le!(self, |writer| {}, { Add, Sub, Mul, Div })
/// ```
macro_rules! instruction_to_bytes_le {
($object:expr, |$writer:ident| $_operation:block, { $( $variant:ident, )+ }) => {{
// Build the match cases.
match $object {
$(Self::$variant(instruction) => {
// Retrieve the opcode index.
// Note: This unwrap is guaranteed to succeed because the opcode variant is known to exist.
let index = Instruction::<N>::OPCODES.iter().position(|&opcode| $variant::<N>::opcode() == opcode).unwrap();
// Serialize the instruction.
u16::write_le(&(index as u16),&mut $writer)?;
instruction.write_le(&mut $writer)?;
}),+
}
Ok(())
}};
}
// Execute the `to_bytes_le` method.
crate::instruction!(instruction_to_bytes_le!(self, writer))
}
}
#[cfg(test)]
mod tests {
use super::*;
use console::network::Testnet3;
type CurrentNetwork = Testnet3;
#[test]
fn test_bytes() -> Result<()> {
let instruction = "add r0 r1 into r2;";
let expected = Instruction::<CurrentNetwork>::from_str(instruction)?;
let expected_bytes = expected.to_bytes_le()?;
let candidate = Instruction::<CurrentNetwork>::from_bytes_le(&expected_bytes)?;
assert_eq!(expected_bytes, candidate.to_bytes_le()?);
Ok(())
}
}