snarkvm_synthesizer_program/logic/command/
contains.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    CallOperator,
    Opcode,
    Operand,
    traits::{FinalizeStoreTrait, RegistersLoad, RegistersStore, StackMatches, StackProgram},
};
use console::{
    network::prelude::*,
    program::{Literal, Register, Value},
    types::Boolean,
};

/// A contains command, e.g. `contains accounts[r0] into r1;`.
/// Contains is `true` if a (`key`, `value`) entry exists in `mapping`, stores the result in `destination`.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Contains<N: Network> {
    /// The mapping name.
    mapping: CallOperator<N>,
    /// The key to access the mapping.
    key: Operand<N>,
    /// The destination register.
    destination: Register<N>,
}

impl<N: Network> Contains<N> {
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        Opcode::Command("contains")
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> Vec<Operand<N>> {
        vec![self.key.clone()]
    }

    /// Returns the mapping.
    #[inline]
    pub const fn mapping(&self) -> &CallOperator<N> {
        &self.mapping
    }

    /// Returns the operand containing the key.
    #[inline]
    pub const fn key(&self) -> &Operand<N> {
        &self.key
    }

    /// Returns the destination register.
    #[inline]
    pub const fn destination(&self) -> &Register<N> {
        &self.destination
    }
}

impl<N: Network> Contains<N> {
    /// Finalizes the command.
    #[inline]
    pub fn finalize(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        store: &impl FinalizeStoreTrait<N>,
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // Determine the program ID and mapping name.
        let (program_id, mapping_name) = match self.mapping {
            CallOperator::Locator(locator) => (*locator.program_id(), *locator.resource()),
            CallOperator::Resource(mapping_name) => (*stack.program_id(), mapping_name),
        };

        // Ensure the mapping exists in storage.
        if !store.contains_mapping_confirmed(&program_id, &mapping_name)? {
            bail!("Mapping '{program_id}/{mapping_name}' does not exist in storage");
        }

        // Load the operand as a plaintext.
        let key = registers.load_plaintext(stack, &self.key)?;

        // Determine if the key exists in the mapping.
        let contains_key = store.contains_key_speculative(program_id, mapping_name, &key)?;

        // Assign the value to the destination register.
        registers.store(stack, &self.destination, Value::from(Literal::Boolean(Boolean::new(contains_key))))?;

        Ok(())
    }
}

impl<N: Network> Parser for Contains<N> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the whitespace and comments from the string.
        let (string, _) = Sanitizer::parse(string)?;
        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;

        // Parse the mapping name from the string.
        let (string, mapping) = CallOperator::parse(string)?;
        // Parse the "[" from the string.
        let (string, _) = tag("[")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the key operand from the string.
        let (string, key) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "]" from the string.
        let (string, _) = tag("]")(string)?;

        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "into" keyword from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;

        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the ";" from the string.
        let (string, _) = tag(";")(string)?;

        Ok((string, Self { mapping, key, destination }))
    }
}

impl<N: Network> FromStr for Contains<N> {
    type Err = Error;

    /// Parses a string into the command.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network> Debug for Contains<N> {
    /// Prints the command as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network> Display for Contains<N> {
    /// Prints the command to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Print the command.
        write!(f, "{} ", Self::opcode())?;
        // Print the mapping and key operand.
        write!(f, "{}[{}] into ", self.mapping, self.key)?;
        // Print the destination register.
        write!(f, "{};", self.destination)
    }
}

impl<N: Network> FromBytes for Contains<N> {
    /// Reads the command from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Read the mapping name.
        let mapping = CallOperator::read_le(&mut reader)?;
        // Read the key operand.
        let key = Operand::read_le(&mut reader)?;
        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;
        // Return the command.
        Ok(Self { mapping, key, destination })
    }
}

impl<N: Network> ToBytes for Contains<N> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Write the mapping name.
        self.mapping.write_le(&mut writer)?;
        // Write the key operand.
        self.key.write_le(&mut writer)?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use console::{network::MainnetV0, program::Register};

    type CurrentNetwork = MainnetV0;

    #[test]
    fn test_parse() {
        let (string, contains) = Contains::<CurrentNetwork>::parse("contains account[r0] into r1;").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(contains.mapping, CallOperator::from_str("account").unwrap());
        assert_eq!(contains.operands().len(), 1, "The number of operands is incorrect");
        assert_eq!(contains.key, Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(contains.destination, Register::Locator(1), "The second operand is incorrect");

        let (string, contains) =
            Contains::<CurrentNetwork>::parse("contains credits.aleo/account[r0] into r1;").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(contains.mapping, CallOperator::from_str("credits.aleo/account").unwrap());
        assert_eq!(contains.operands().len(), 1, "The number of operands is incorrect");
        assert_eq!(contains.key, Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(contains.destination, Register::Locator(1), "The second operand is incorrect");
    }

    #[test]
    fn test_from_bytes() {
        let (string, contains) = Contains::<CurrentNetwork>::parse("contains account[r0] into r1;").unwrap();
        assert!(string.is_empty());
        let bytes_le = contains.to_bytes_le().unwrap();
        let result = Contains::<CurrentNetwork>::from_bytes_le(&bytes_le[..]);
        assert!(result.is_ok())
    }
}