snarkvm_synthesizer_program/logic/instruction/operation/async_.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
Opcode,
Operand,
RegistersLoadCircuit,
RegistersStore,
RegistersStoreCircuit,
Result,
traits::{RegistersLoad, StackMatches, StackProgram},
};
use circuit::{Inject, Mode};
use console::{
network::prelude::*,
program::{Argument, FinalizeType, Future, Identifier, Locator, Register, RegisterType, Value},
};
/// Invokes the asynchronous call on the operands, producing a future.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Async<N: Network> {
/// The function name.
function_name: Identifier<N>,
/// The operands.
operands: Vec<Operand<N>>,
/// The destination register.
destination: Register<N>,
}
impl<N: Network> Async<N> {
/// Returns the opcode.
#[inline]
pub const fn opcode() -> Opcode {
Opcode::Async
}
/// Returns the function name.
#[inline]
pub const fn function_name(&self) -> &Identifier<N> {
&self.function_name
}
/// Returns the operands in the operation.
#[inline]
pub fn operands(&self) -> &[Operand<N>] {
// Sanity check that there is less than or equal to MAX_INPUTS operands.
debug_assert!(self.operands.len() <= N::MAX_INPUTS, "`async` must have less than {} operands", N::MAX_INPUTS);
// Return the operands.
&self.operands
}
/// Returns the destination register.
#[inline]
pub fn destinations(&self) -> Vec<Register<N>> {
vec![self.destination.clone()]
}
}
impl<N: Network> Async<N> {
/// Evaluates the instruction.
#[inline]
pub fn evaluate(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
) -> Result<()> {
// Ensure the number of operands is correct.
if self.operands.len() > N::MAX_INPUTS {
bail!("'{}' expects <= {} operands, found {} operands", Self::opcode(), N::MAX_INPUTS, self.operands.len())
}
// Load the operand values and check that they are valid arguments.
let arguments: Vec<_> = self
.operands
.iter()
.map(|operand| match registers.load(stack, operand)? {
Value::Plaintext(plaintext) => Ok(Argument::Plaintext(plaintext)),
Value::Record(_) => bail!("Cannot pass a record into an `async` instruction"),
Value::Future(future) => Ok(Argument::Future(future)),
})
.try_collect()?;
// Initialize a future.
let future = Value::Future(Future::new(*stack.program_id(), *self.function_name(), arguments));
// Store the future in the destination register.
registers.store(stack, &self.destination, future)?;
Ok(())
}
/// Executes the instruction.
pub fn execute<A: circuit::Aleo<Network = N>>(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
registers: &mut (impl RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
) -> Result<()> {
// Ensure the number of operands is correct.
if self.operands.len() > N::MAX_INPUTS {
bail!("'{}' expects <= {} operands, found {} operands", Self::opcode(), N::MAX_INPUTS, self.operands.len())
}
// Load the operand values and check that they are valid arguments.
let arguments: Vec<_> = self
.operands
.iter()
.map(|operand| match registers.load_circuit(stack, operand)? {
circuit::Value::Plaintext(plaintext) => Ok(circuit::Argument::Plaintext(plaintext)),
circuit::Value::Record(_) => bail!("Cannot pass a record into an `async` instruction"),
circuit::Value::Future(future) => Ok(circuit::Argument::Future(future)),
})
.try_collect()?;
// Initialize a future.
let future = circuit::Value::Future(circuit::Future::from(
circuit::ProgramID::new(Mode::Constant, *stack.program_id()),
circuit::Identifier::new(Mode::Constant, *self.function_name()),
arguments,
));
// Store the future in the destination register.
registers.store_circuit(stack, &self.destination, future)?;
Ok(())
}
/// Finalizes the instruction.
#[inline]
pub fn finalize(
&self,
_stack: &(impl StackMatches<N> + StackProgram<N>),
_registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
) -> Result<()> {
bail!("Forbidden operation: Finalize cannot invoke 'async'.")
}
/// Returns the output type from the given program and input types.
#[inline]
pub fn output_types(
&self,
stack: &impl StackProgram<N>,
input_types: &[RegisterType<N>],
) -> Result<Vec<RegisterType<N>>> {
// Ensure that an associated finalize block exists.
let function = stack.get_function(self.function_name())?;
let finalize = match function.finalize_logic() {
Some(finalize) => finalize,
None => bail!("'{}/{}' does not have a finalize block", stack.program_id(), self.function_name()),
};
// Check that the number of inputs matches the number of arguments.
if input_types.len() != finalize.input_types().len() {
bail!(
"'{}/{}' finalize expects {} arguments, found {} arguments",
stack.program_id(),
self.function_name(),
finalize.input_types().len(),
input_types.len()
);
}
// Check the type of each operand.
for (input_type, finalize_type) in input_types.iter().zip_eq(finalize.input_types()) {
match (input_type, finalize_type) {
(RegisterType::Plaintext(input_type), FinalizeType::Plaintext(finalize_type)) => {
ensure!(
input_type == &finalize_type,
"'{}/{}' finalize expects a '{}' argument, found a '{}' argument",
stack.program_id(),
self.function_name(),
finalize_type,
input_type
);
}
(RegisterType::Record(..), _) => bail!("Attempted to pass a 'record' into 'async'"),
(RegisterType::ExternalRecord(..), _) => {
bail!("Attempted to pass an 'external record' into 'async'")
}
(RegisterType::Future(input_locator), FinalizeType::Future(expected_locator)) => {
ensure!(
input_locator == &expected_locator,
"'{}/{}' async expects a '{}.future' argument, found a '{}.future' argument",
stack.program_id(),
self.function_name(),
expected_locator,
input_locator
);
}
(input_type, finalize_type) => bail!(
"'{}/{}' async expects a '{}' argument, found a '{}' argument",
stack.program_id(),
self.function_name(),
finalize_type,
input_type
),
}
}
Ok(vec![RegisterType::Future(Locator::new(*stack.program_id(), *self.function_name()))])
}
}
impl<N: Network> Parser for Async<N> {
/// Parses a string into an operation.
#[inline]
fn parse(string: &str) -> ParserResult<Self> {
/// Parses an operand.
fn parse_operand<N: Network>(string: &str) -> ParserResult<Operand<N>> {
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the operand from the string.
let (string, operand) = Operand::parse(string)?;
// Return the remaining string and operand.
Ok((string, operand))
}
// Parse the whitespace and comments from the string.
let (string, _) = Sanitizer::parse(string)?;
// Parse the opcode from the string.
let (string, _) = tag(*Self::opcode())(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the function name from the string.
let (string, function_name) = Identifier::parse(string)?;
// Parse the operands from the string.
let (string, operands) = many0(parse_operand)(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the 'into' from the string.
let (string, _) = tag("into")(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the destination register from the string.
let (string, destination) = Register::parse(string)?;
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Ensure the number of operands is less than or equal to MAX_INPUTS.
match operands.len() <= N::MAX_INPUTS {
true => Ok((string, Self { function_name, operands, destination })),
false => map_res(fail, |_: ParserResult<Self>| {
Err(error(format!("The number of operands must be <= {}, found {}", N::MAX_INPUTS, operands.len())))
})(string),
}
}
}
impl<N: Network> FromStr for Async<N> {
type Err = Error;
/// Parses a string into an operation.
#[inline]
fn from_str(string: &str) -> Result<Self> {
match Self::parse(string) {
Ok((remainder, object)) => {
// Ensure the remainder is empty.
ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
// Return the object.
Ok(object)
}
Err(error) => bail!("Failed to parse string. {error}"),
}
}
}
impl<N: Network> Debug for Async<N> {
/// Prints the operation as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self, f)
}
}
impl<N: Network> Display for Async<N> {
/// Prints the operation to a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// Ensure the number of operands is less than or equal to MAX_INPUTS.
if self.operands.len() > N::MAX_INPUTS {
return Err(fmt::Error);
}
// Print the operation.
write!(f, "{} {}", Self::opcode(), self.function_name)?;
self.operands.iter().try_for_each(|operand| write!(f, " {operand}"))?;
write!(f, " into {}", self.destination)
}
}
impl<N: Network> FromBytes for Async<N> {
/// Reads the operation from a buffer.
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
// Read the function name.
let function_name = Identifier::read_le(&mut reader)?;
// Read the number of operands.
let num_operands = u8::read_le(&mut reader)?;
// Ensure the number of operands is less than or equal to MAX_INPUTS.
if num_operands as usize > N::MAX_INPUTS {
return Err(error(format!("The number of operands must be <= {}, found {}", N::MAX_INPUTS, num_operands)));
}
// Initialize the vector for the operands.
let mut operands = Vec::with_capacity(num_operands as usize);
// Read the operands.
for _ in 0..(num_operands as usize) {
operands.push(Operand::read_le(&mut reader)?);
}
// Read the destination register.
let destination = Register::read_le(&mut reader)?;
// Return the operation.
Ok(Self { function_name, operands, destination })
}
}
impl<N: Network> ToBytes for Async<N> {
/// Writes the operation to a buffer.
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
// Ensure the number of operands is less than or equal to MAX_INPUTS.
if self.operands.len() > N::MAX_INPUTS {
return Err(error(format!(
"The number of operands must be <= {}, found {}",
N::MAX_INPUTS,
self.operands.len()
)));
}
// Write the function name.
self.function_name.write_le(&mut writer)?;
// Write the number of operands.
u8::try_from(self.operands.len()).map_err(|e| error(e.to_string()))?.write_le(&mut writer)?;
// Write the operands.
self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
// Write the destination register.
self.destination.write_le(&mut writer)
}
}
#[cfg(test)]
mod tests {
use super::*;
// use circuit::AleoV0;
use console::network::MainnetV0;
type CurrentNetwork = MainnetV0;
// type CurrentAleo = AleoV0;
//
// /// Samples the stack. Note: Do not replicate this for real program use, it is insecure.
// fn sample_stack(
// opcode: Opcode,
// type_a: LiteralType,
// type_b: LiteralType,
// mode_a: circuit::Mode,
// mode_b: circuit::Mode,
// ) -> Result<(Stack<CurrentNetwork>, Vec<Operand<CurrentNetwork>>)> {
// use crate::{Process, Program};
// use console::program::Identifier;
//
// // Initialize the opcode.
// let opcode = opcode.to_string();
//
// // Initialize the function name.
// let function_name = Identifier::<CurrentNetwork>::from_str("run")?;
//
// // Initialize the registers.
// let r0 = Register::Locator(0);
// let r1 = Register::Locator(1);
//
// // Initialize the program.
// let program = Program::from_str(&format!(
// "program testing.aleo;
// function {function_name}:
// input {r0} as {type_a}.{mode_a};
// input {r1} as {type_b}.{mode_b};
// {opcode} {r0} {r1};
// "
// ))?;
//
// // Initialize the operands.
// let operand_a = Operand::Register(r0);
// let operand_b = Operand::Register(r1);
// let operands = vec![operand_a, operand_b];
//
// // Initialize the stack.
// let stack = Stack::new(&Process::load()?, &program)?;
//
// Ok((stack, operands))
// }
//
// /// Samples the registers. Note: Do not replicate this for real program use, it is insecure.
// fn sample_registers(
// stack: &Stack<CurrentNetwork>,
// literal_a: &Literal<CurrentNetwork>,
// literal_b: &Literal<CurrentNetwork>,
// ) -> Result<Registers<CurrentNetwork, CurrentAleo>> {
// use crate::{Authorization, CallStack};
// use console::program::{Identifier, Plaintext, Value};
//
// // Initialize the function name.
// let function_name = Identifier::from_str("run")?;
//
// // Initialize the registers.
// let mut registers = Registers::<CurrentNetwork, CurrentAleo>::new(
// CallStack::evaluate(Authorization::new(&[]))?,
// stack.get_register_types(&function_name)?.clone(),
// );
//
// // Initialize the registers.
// let r0 = Register::Locator(0);
// let r1 = Register::Locator(1);
//
// // Initialize the console values.
// let value_a = Value::Plaintext(Plaintext::from(literal_a));
// let value_b = Value::Plaintext(Plaintext::from(literal_b));
//
// // Store the values in the console registers.
// registers.store(stack, &r0, value_a.clone())?;
// registers.store(stack, &r1, value_b.clone())?;
//
// Ok(registers)
// }
//
// fn check_finalize(
// operation: impl FnOnce(Vec<Operand<CurrentNetwork>>) -> FinalizeOperation<CurrentNetwork, VARIANT>,
// opcode: Opcode,
// literal_a: &Literal<CurrentNetwork>,
// literal_b: &Literal<CurrentNetwork>,
// mode_a: &circuit::Mode,
// mode_b: &circuit::Mode,
// ) {
// // Initialize the types.
// let type_a = literal_a.to_type();
// let type_b = literal_b.to_type();
// assert_eq!(type_a, type_b, "The two literals must be the *same* type for this test");
//
// // Initialize the stack.
// let (stack, operands) = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b).unwrap();
// // Initialize the operation.
// let operation = operation(operands);
//
// /* First, check the operation *succeeds* when both operands are `literal_a.mode_a`. */
// {
// // Attempt to compute the valid operand case.
// let mut registers = sample_registers(&stack, literal_a, literal_a).unwrap();
// let result_a = operation.evaluate(&stack, &mut registers);
//
// // Ensure the result is correct.
// match VARIANT {
// 0 => assert!(result_a.is_ok(), "Instruction '{operation}' failed (console): {literal_a} {literal_a}"),
// _ => panic!("Found an invalid 'finalize' variant in the test"),
// }
// }
// /* Next, check the mismatching literals *fail*. */
// if literal_a != literal_b {
// // Attempt to compute the valid operand case.
// let mut registers = sample_registers(&stack, literal_a, literal_b).unwrap();
// let result_a = operation.evaluate(&stack, &mut registers);
//
// // Ensure the result is correct.
// match VARIANT {
// 0 => assert!(
// result_a.is_err(),
// "Instruction '{operation}' should have failed (console): {literal_a} {literal_b}"
// ),
// _ => panic!("Found an invalid 'finalize' variant in the test"),
// }
// }
// }
//
// fn check_finalize_fails(
// opcode: Opcode,
// literal_a: &Literal<CurrentNetwork>,
// literal_b: &Literal<CurrentNetwork>,
// mode_a: &circuit::Mode,
// mode_b: &circuit::Mode,
// ) {
// // Initialize the types.
// let type_a = literal_a.to_type();
// let type_b = literal_b.to_type();
// assert_ne!(type_a, type_b, "The two literals must be *different* types for this test");
//
// // If the types mismatch, ensure the stack fails to initialize.
// let result = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b);
// assert!(
// result.is_err(),
// "Stack should have failed to initialize for: {opcode} {type_a}.{mode_a} {type_b}.{mode_b}"
// );
// }
//
// #[test]
// fn test_finalize_eq_succeeds() {
// // Initialize the operation.
// let operation = |operands| Async::<CurrentNetwork> { operands };
// // Initialize the opcode.
// let opcode = Async::<CurrentNetwork>::opcode();
//
// let mut rng = TestRng::default();
//
// // Prepare the test.
// let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
// let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
// let modes_a = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
// let modes_b = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
//
// for (literal_a, literal_b) in literals_a.iter().zip_eq(literals_b.iter()) {
// for mode_a in &modes_a {
// for mode_b in &modes_b {
// // Check the operation.
// check_finalize(operation, opcode, literal_a, literal_b, mode_a, mode_b);
// }
// }
// }
// }
//
// #[test]
// fn test_finalize_evaluate() {
// use rayon::prelude::*;
//
// // Initialize the opcode.
// let opcode = Async::<CurrentNetwork>::opcode();
//
// let mut rng = TestRng::default();
//
// // Prepare the test.
// let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
// let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
// let modes_a = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
// let modes_b = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
//
// literals_a.par_iter().for_each(|literal_a| {
// for literal_b in &literals_b {
// for mode_a in &modes_a {
// for mode_b in &modes_b {
// if literal_a.to_type() != literal_b.to_type() {
// // Check the operation fails.
// check_finalize_fails(opcode, literal_a, literal_b, mode_a, mode_b);
// }
// }
// }
// }
// });
// }
#[test]
fn test_parse() {
let expected = "async foo r0 r1 into r3";
let (string, async_) = Async::<CurrentNetwork>::parse(expected).unwrap();
assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
assert_eq!(expected, async_.to_string(), "Display.fmt() did not match expected: '{string}'");
assert_eq!(async_.operands.len(), 2, "The number of operands is incorrect");
assert_eq!(async_.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
assert_eq!(async_.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
assert_eq!(async_.destination, Register::Locator(3), "The destination is incorrect");
}
}