snarkvm_synthesizer_program/logic/instruction/operation/
sign_verify.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    Opcode,
    Operand,
    traits::{RegistersLoad, RegistersLoadCircuit, RegistersStore, RegistersStoreCircuit, StackMatches, StackProgram},
};
use circuit::prelude::ToFields as CircuitToFields;
use console::{
    network::prelude::*,
    program::{Literal, LiteralType, PlaintextType, Register, RegisterType, ToFields as ConsoleToFields},
    types::Boolean,
};

/// Computes whether `signature` is valid for the given `address` and `message`.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct SignVerify<N: Network> {
    /// The operands.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
}

impl<N: Network> SignVerify<N> {
    /// Initializes a new `sign.verify` instruction.
    #[inline]
    pub fn new(operands: Vec<Operand<N>>, destination: Register<N>) -> Result<Self> {
        // Sanity check the number of operands.
        ensure!(operands.len() == 3, "Instruction '{}' must have three operands", Self::opcode());
        // Return the instruction.
        Ok(Self { operands, destination })
    }

    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        Opcode::Sign
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        // Sanity check that there are exactly three operands.
        debug_assert!(self.operands.len() == 3, "Instruction '{}' must have three operands", Self::opcode());
        // Return the operands.
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }
}

impl<N: Network> SignVerify<N> {
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != 3 {
            bail!("Instruction '{}' expects 3 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Retrieve the inputs.
        let signature = match registers.load_literal(stack, &self.operands[0])? {
            Literal::Signature(signature) => signature,
            _ => bail!("Expected the first operand to be a signature."),
        };
        let address = match registers.load_literal(stack, &self.operands[1])? {
            Literal::Address(address) => address,
            _ => bail!("Expected the second operand to be an address."),
        };
        let message = registers.load(stack, &self.operands[2])?;

        // Verify the signature.
        let output = Literal::Boolean(Boolean::new(signature.verify(&address, &message.to_fields()?)));

        // Store the output.
        registers.store_literal(stack, &self.destination, output)
    }

    /// Executes the instruction.
    #[inline]
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != 3 {
            bail!("Instruction '{}' expects 3 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Retrieve the inputs.
        let signature = match registers.load_literal_circuit(stack, &self.operands[0])? {
            circuit::Literal::Signature(signature) => signature,
            _ => bail!("Expected the first operand to be a signature."),
        };
        let address = match registers.load_literal_circuit(stack, &self.operands[1])? {
            circuit::Literal::Address(address) => address,
            _ => bail!("Expected the second operand to be an address."),
        };
        let message = registers.load_circuit(stack, &self.operands[2])?;

        // Verify the signature.
        let output = circuit::Literal::Boolean(signature.verify(&address, &message.to_fields()));

        // Store the output.
        registers.store_literal_circuit(stack, &self.destination, output)
    }

    /// Finalizes the instruction.
    #[inline]
    pub fn finalize(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        self.evaluate(stack, registers)
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(
        &self,
        _stack: &impl StackProgram<N>,
        input_types: &[RegisterType<N>],
    ) -> Result<Vec<RegisterType<N>>> {
        // Ensure the number of input types is correct.
        if input_types.len() != 3 {
            bail!("Instruction '{}' expects 3 inputs, found {} inputs", Self::opcode(), input_types.len())
        }

        // Ensure the first operand is a signature.
        if input_types[0] != RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Signature)) {
            bail!(
                "Instruction '{}' expects the first input to be a 'signature'. Found input of type '{}'",
                Self::opcode(),
                input_types[0]
            )
        }

        // Ensure the second operand is an address.
        if input_types[1] != RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Address)) {
            bail!(
                "Instruction '{}' expects the second input to be an 'address'. Found input of type '{}'",
                Self::opcode(),
                input_types[1]
            )
        }

        Ok(vec![RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Boolean))])
    }
}

impl<N: Network> Parser for SignVerify<N> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the first operand from the string.
        let (string, first) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the second operand from the string.
        let (string, second) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the third operand from the string.
        let (string, third) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "into" from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;

        Ok((string, Self { operands: vec![first, second, third], destination }))
    }
}

impl<N: Network> FromStr for SignVerify<N> {
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network> Debug for SignVerify<N> {
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network> Display for SignVerify<N> {
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is 3.
        if self.operands.len() != 3 {
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} ", Self::opcode())?;
        self.operands.iter().try_for_each(|operand| write!(f, "{operand} "))?;
        write!(f, "into {}", self.destination)
    }
}

impl<N: Network> FromBytes for SignVerify<N> {
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(3);
        // Read the operands.
        for _ in 0..3 {
            operands.push(Operand::read_le(&mut reader)?);
        }
        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;

        // Return the operation.
        Ok(Self { operands, destination })
    }
}

impl<N: Network> ToBytes for SignVerify<N> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is 3.
        if self.operands.len() != 3 {
            return Err(error(format!("The number of operands must be 3, found {}", self.operands.len())));
        }
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use console::network::MainnetV0;

    type CurrentNetwork = MainnetV0;

    #[test]
    fn test_parse() {
        let (string, is) = SignVerify::<CurrentNetwork>::parse("sign.verify r0 r1 r2 into r3").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(is.operands.len(), 3, "The number of operands is incorrect");
        assert_eq!(is.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(is.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
        assert_eq!(is.operands[2], Operand::Register(Register::Locator(2)), "The third operand is incorrect");
        assert_eq!(is.destination, Register::Locator(3), "The destination register is incorrect");
    }
}