snarkvm_synthesizer_program/logic/instruction/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
mod opcode;
pub use opcode::*;
mod operand;
pub use operand::*;
mod operation;
pub use operation::*;
mod bytes;
mod parse;
use crate::traits::{
InstructionTrait,
RegistersLoad,
RegistersLoadCircuit,
RegistersSigner,
RegistersSignerCircuit,
RegistersStore,
RegistersStoreCircuit,
StackMatches,
StackProgram,
};
use console::{
network::Network,
prelude::{
Debug,
Display,
Error,
Formatter,
FromBytes,
FromStr,
IoResult,
Parser,
ParserResult,
Read,
Result,
Sanitizer,
ToBytes,
Write,
alt,
bail,
ensure,
error,
fmt,
map,
tag,
},
program::{Register, RegisterType},
};
#[derive(Clone, PartialEq, Eq, Hash)]
pub enum Instruction<N: Network> {
/// Compute the absolute value of `first`, checking for overflow, and storing the outcome in `destination`.
Abs(Abs<N>),
/// Compute the absolute value of `first`, wrapping around at the boundary of the type, and storing the outcome in `destination`.
AbsWrapped(AbsWrapped<N>),
/// Adds `first` with `second`, storing the outcome in `destination`.
Add(Add<N>),
/// Adds `first` with `second`, wrapping around at the boundary of the type, and storing the outcome in `destination`.
AddWrapped(AddWrapped<N>),
/// Performs a bitwise `and` operation on `first` and `second`, storing the outcome in `destination`.
And(And<N>),
/// Asserts `first` and `second` are equal.
AssertEq(AssertEq<N>),
/// Asserts `first` and `second` are **not** equal.
AssertNeq(AssertNeq<N>),
/// Calls a finalize asynchronously on the operands.
Async(Async<N>),
/// Calls a closure or function on the operands.
Call(Call<N>),
/// Casts the operands into the declared type.
Cast(Cast<N>),
/// Casts the operands into the declared type, with lossy truncation if applicable.
CastLossy(CastLossy<N>),
/// Performs a BHP commitment on inputs of 256-bit chunks.
CommitBHP256(CommitBHP256<N>),
/// Performs a BHP commitment on inputs of 512-bit chunks.
CommitBHP512(CommitBHP512<N>),
/// Performs a BHP commitment on inputs of 768-bit chunks.
CommitBHP768(CommitBHP768<N>),
/// Performs a BHP commitment on inputs of 1024-bit chunks.
CommitBHP1024(CommitBHP1024<N>),
/// Performs a Pedersen commitment on up to a 64-bit input.
CommitPED64(CommitPED64<N>),
/// Performs a Pedersen commitment on up to a 128-bit input.
CommitPED128(CommitPED128<N>),
/// Divides `first` by `second`, storing the outcome in `destination`.
Div(Div<N>),
/// Divides `first` by `second`, wrapping around at the boundary of the type, and storing the outcome in `destination`.
DivWrapped(DivWrapped<N>),
/// Doubles `first`, storing the outcome in `destination`.
Double(Double<N>),
/// Computes whether `first` is greater than `second` as a boolean, storing the outcome in `destination`.
GreaterThan(GreaterThan<N>),
/// Computes whether `first` is greater than or equal to `second` as a boolean, storing the outcome in `destination`.
GreaterThanOrEqual(GreaterThanOrEqual<N>),
/// Performs a BHP hash on inputs of 256-bit chunks.
HashBHP256(HashBHP256<N>),
/// Performs a BHP hash on inputs of 512-bit chunks.
HashBHP512(HashBHP512<N>),
/// Performs a BHP hash on inputs of 768-bit chunks.
HashBHP768(HashBHP768<N>),
/// Performs a BHP hash on inputs of 1024-bit chunks.
HashBHP1024(HashBHP1024<N>),
/// Performs a Keccak hash, outputting 256 bits.
HashKeccak256(HashKeccak256<N>),
/// Performs a Keccak hash, outputting 384 bits.
HashKeccak384(HashKeccak384<N>),
/// Performs a Keccak hash, outputting 512 bits.
HashKeccak512(HashKeccak512<N>),
/// Performs a Pedersen hash on up to a 64-bit input.
HashPED64(HashPED64<N>),
/// Performs a Pedersen hash on up to a 128-bit input.
HashPED128(HashPED128<N>),
/// Performs a Poseidon hash with an input rate of 2.
HashPSD2(HashPSD2<N>),
/// Performs a Poseidon hash with an input rate of 4.
HashPSD4(HashPSD4<N>),
/// Performs a Poseidon hash with an input rate of 8.
HashPSD8(HashPSD8<N>),
/// Performs a SHA-3 hash, outputting 256 bits.
HashSha3_256(HashSha3_256<N>),
/// Performs a SHA-3 hash, outputting 384 bits.
HashSha3_384(HashSha3_384<N>),
/// Performs a SHA-3 hash, outputting 512 bits.
HashSha3_512(HashSha3_512<N>),
/// Performs a Poseidon hash with an input rate of 2.
HashManyPSD2(HashManyPSD2<N>),
/// Performs a Poseidon hash with an input rate of 4.
HashManyPSD4(HashManyPSD4<N>),
/// Performs a Poseidon hash with an input rate of 8.
HashManyPSD8(HashManyPSD8<N>),
/// Computes the multiplicative inverse of `first`, storing the outcome in `destination`.
Inv(Inv<N>),
/// Computes whether `first` equals `second` as a boolean, storing the outcome in `destination`.
IsEq(IsEq<N>),
/// Computes whether `first` does **not** equals `second` as a boolean, storing the outcome in `destination`.
IsNeq(IsNeq<N>),
/// Computes whether `first` is less than `second` as a boolean, storing the outcome in `destination`.
LessThan(LessThan<N>),
/// Computes whether `first` is less than or equal to `second` as a boolean, storing the outcome in `destination`.
LessThanOrEqual(LessThanOrEqual<N>),
/// Computes `first` mod `second`, storing the outcome in `destination`.
Modulo(Modulo<N>),
/// Multiplies `first` with `second`, storing the outcome in `destination`.
Mul(Mul<N>),
/// Multiplies `first` with `second`, wrapping around at the boundary of the type, and storing the outcome in `destination`.
MulWrapped(MulWrapped<N>),
/// Returns `false` if `first` and `second` are true, storing the outcome in `destination`.
Nand(Nand<N>),
/// Negates `first`, storing the outcome in `destination`.
Neg(Neg<N>),
/// Returns `true` if neither `first` nor `second` is `true`, storing the outcome in `destination`.
Nor(Nor<N>),
/// Flips each bit in the representation of `first`, storing the outcome in `destination`.
Not(Not<N>),
/// Performs a bitwise `or` on `first` and `second`, storing the outcome in `destination`.
Or(Or<N>),
/// Raises `first` to the power of `second`, storing the outcome in `destination`.
Pow(Pow<N>),
/// Raises `first` to the power of `second`, wrapping around at the boundary of the type, storing the outcome in `destination`.
PowWrapped(PowWrapped<N>),
/// Divides `first` by `second`, storing the remainder in `destination`.
Rem(Rem<N>),
/// Divides `first` by `second`, wrapping around at the boundary of the type, storing the remainder in `destination`.
RemWrapped(RemWrapped<N>),
/// Shifts `first` left by `second` bits, storing the outcome in `destination`.
Shl(Shl<N>),
/// Shifts `first` left by `second` bits, wrapping around at the boundary of the type, storing the outcome in `destination`.
ShlWrapped(ShlWrapped<N>),
/// Shifts `first` right by `second` bits, storing the outcome in `destination`.
Shr(Shr<N>),
/// Shifts `first` right by `second` bits, wrapping around at the boundary of the type, storing the outcome in `destination`.
ShrWrapped(ShrWrapped<N>),
/// Computes whether `signature` is valid for the given `address` and `message`.
SignVerify(SignVerify<N>),
/// Squares 'first', storing the outcome in `destination`.
Square(Square<N>),
/// Compute the square root of 'first', storing the outcome in `destination`.
SquareRoot(SquareRoot<N>),
/// Computes `first - second`, storing the outcome in `destination`.
Sub(Sub<N>),
/// Computes `first - second`, wrapping around at the boundary of the type, and storing the outcome in `destination`.
SubWrapped(SubWrapped<N>),
/// Selects `first`, if `condition` is true, otherwise selects `second`, storing the result in `destination`.
Ternary(Ternary<N>),
/// Performs a bitwise `xor` on `first` and `second`, storing the outcome in `destination`.
Xor(Xor<N>),
}
/// Creates a match statement that applies the given operation for each instruction.
///
/// ## Example
/// This example will print the opcode and the instruction to the given stream.
/// ```ignore
/// instruction!(self, |instruction| write!(f, "{} {};", self.opcode(), instruction))
/// ```
/// The above example is equivalent to the following logic:
/// ```ignore
/// match self {
/// Self::Add(instruction) => write!(f, "{} {};", self.opcode(), instruction),
/// Self::Sub(instruction) => write!(f, "{} {};", self.opcode(), instruction),
/// Self::Mul(instruction) => write!(f, "{} {};", self.opcode(), instruction),
/// Self::Div(instruction) => write!(f, "{} {};", self.opcode(), instruction),
/// }
/// )
/// ```
#[macro_export]
macro_rules! instruction {
// A variant **with** curly braces:
// i.e. `instruction!(self, |instruction| { operation(instruction) })`.
($object:expr, |$input:ident| $operation:block) => {{ $crate::instruction!(instruction, $object, |$input| $operation) }};
// A variant **without** curly braces:
// i.e. `instruction!(self, |instruction| operation(instruction))`.
($object:expr, |$input:ident| $operation:expr) => {{ $crate::instruction!(instruction, $object, |$input| { $operation }) }};
// A variant **with** curly braces:
// i.e. `instruction!(custom_macro, self, |instruction| { operation(instruction) })`.
($macro_:ident, $object:expr, |$input:ident| $operation:block) => {
$macro_!{$object, |$input| $operation, {
Abs,
AbsWrapped,
Add,
AddWrapped,
And,
AssertEq,
AssertNeq,
Async,
Call,
Cast,
CastLossy,
CommitBHP256,
CommitBHP512,
CommitBHP768,
CommitBHP1024,
CommitPED64,
CommitPED128,
Div,
DivWrapped,
Double,
GreaterThan,
GreaterThanOrEqual,
HashBHP256,
HashBHP512,
HashBHP768,
HashBHP1024,
HashKeccak256,
HashKeccak384,
HashKeccak512,
HashPED64,
HashPED128,
HashPSD2,
HashPSD4,
HashPSD8,
HashSha3_256,
HashSha3_384,
HashSha3_512,
HashManyPSD2,
HashManyPSD4,
HashManyPSD8,
Inv,
IsEq,
IsNeq,
LessThan,
LessThanOrEqual,
Modulo,
Mul,
MulWrapped,
Nand,
Neg,
Nor,
Not,
Or,
Pow,
PowWrapped,
Rem,
RemWrapped,
Shl,
ShlWrapped,
Shr,
ShrWrapped,
SignVerify,
Square,
SquareRoot,
Sub,
SubWrapped,
Ternary,
Xor,
}}
};
// A variant **without** curly braces:
// i.e. `instruction!(custom_macro, self, |instruction| operation(instruction))`.
($macro_:ident, $object:expr, |$input:ident| $operation:expr) => {{ $crate::instruction!($macro_, $object, |$input| { $operation }) }};
// A variant invoking a macro internally:
// i.e. `instruction!(instruction_to_bytes_le!(self, writer))`.
($macro_:ident!($object:expr, $input:ident)) => {{ $crate::instruction!($macro_, $object, |$input| {}) }};
////////////////////
// Private Macros //
////////////////////
// A static variant **with** curly braces:
// i.e. `instruction!(self, |InstructionMember| { InstructionMember::opcode() })`.
($object:expr, |InstructionMember| $operation:block, { $( $variant:ident, )+ }) => {{
// Build the match cases.
match $object {
$( Self::$variant(..) => {{
// Set the variant to be called `InstructionMember`.
type InstructionMember<N> = $variant<N>;
// Perform the operation.
$operation
}} ),+
}
}};
// A static variant **without** curly braces:
// i.e. `instruction!(self, |InstructionMember| InstructionMember::opcode())`.
($object:expr, |InstructionMember| $operation:expr, { $( $variant:ident, )+ }) => {{
$crate::instruction!($object, |InstructionMember| { $operation }, { $( $variant, )+ })
}};
// A non-static variant **with** curly braces:
// i.e. `instruction!(self, |instruction| { operation(instruction) })`.
($object:expr, |$instruction:ident| $operation:block, { $( $variant:ident, )+ }) => {{
// Build the match cases.
match $object { $( Self::$variant($instruction) => { $operation } ),+ }
}};
// A non-static variant **without** curly braces:
// i.e. `instruction!(self, |instruction| operation(instruction))`.
($object:expr, |$instruction:ident| $operation:expr, { $( $variant:ident, )+ }) => {{
$crate::instruction!($object, |$instruction| { $operation }, { $( $variant, )+ })
}};
}
/// Derives `From<Operation>` for the instruction.
///
/// ## Example
/// ```ignore
/// derive_from_operation!(Instruction, |None| {}, { Add, Sub, Mul, Div })
/// ```
macro_rules! derive_from_operation {
($_object:expr, |$_reader:ident| $_operation:block, { $( $variant:ident, )+ }) => {
$(impl<N: Network> From<$variant<N>> for Instruction<N> {
#[inline]
fn from(operation: $variant<N>) -> Self {
Self::$variant(operation)
}
})+
}
}
instruction!(derive_from_operation, Instruction, |None| {});
/// Returns a slice of all instruction opcodes.
///
/// ## Example
/// ```ignore
/// opcodes!(Instruction, |None| {}, { Add, Sub, Mul, Div })
/// ```
macro_rules! opcodes {
($_object:expr, |$_reader:ident| $_operation:block, { $( $variant:ident, )+ }) => { [$( $variant::<N>::opcode() ),+] }
}
impl<N: Network> InstructionTrait<N> for Instruction<N> {
/// Returns the destination registers of the instruction.
#[inline]
fn destinations(&self) -> Vec<Register<N>> {
instruction!(self, |instruction| instruction.destinations())
}
/// Returns `true` if the given name is a reserved opcode.
#[inline]
fn is_reserved_opcode(name: &str) -> bool {
// Check if the given name matches any opcode (in its entirety; including past the first '.' if it exists).
Instruction::<N>::OPCODES.iter().any(|opcode| **opcode == name)
}
}
impl<N: Network> Instruction<N> {
/// The list of all instruction opcodes.
pub const OPCODES: &'static [Opcode] = &instruction!(opcodes, Instruction, |None| {});
/// Returns the opcode of the instruction.
#[inline]
pub const fn opcode(&self) -> Opcode {
instruction!(self, |InstructionMember| InstructionMember::<N>::opcode())
}
/// Returns the operands of the instruction.
#[inline]
pub fn operands(&self) -> &[Operand<N>] {
instruction!(self, |instruction| instruction.operands())
}
/// Evaluates the instruction.
#[inline]
pub fn evaluate(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
registers: &mut (impl RegistersSigner<N> + RegistersLoad<N> + RegistersStore<N>),
) -> Result<()> {
instruction!(self, |instruction| instruction.evaluate(stack, registers))
}
/// Executes the instruction.
#[inline]
pub fn execute<A: circuit::Aleo<Network = N>>(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
registers: &mut (impl RegistersSignerCircuit<N, A> + RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
) -> Result<()> {
instruction!(self, |instruction| instruction.execute::<A>(stack, registers))
}
/// Finalizes the instruction.
#[inline]
pub fn finalize(
&self,
stack: &(impl StackMatches<N> + StackProgram<N>),
registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
) -> Result<()> {
instruction!(self, |instruction| instruction.finalize(stack, registers))
}
/// Returns the output type from the given input types.
#[inline]
pub fn output_types(
&self,
stack: &impl StackProgram<N>,
input_types: &[RegisterType<N>],
) -> Result<Vec<RegisterType<N>>> {
instruction!(self, |instruction| instruction.output_types(stack, input_types))
}
}
impl<N: Network> Debug for Instruction<N> {
/// Prints the instruction as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self, f)
}
}
impl<N: Network> Display for Instruction<N> {
/// Prints the instruction as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
instruction!(self, |instruction| write!(f, "{instruction};"))
}
}
#[cfg(test)]
mod tests {
use super::*;
use console::network::MainnetV0;
type CurrentNetwork = MainnetV0;
#[test]
fn test_opcodes() {
// Sanity check the number of instructions is unchanged.
// Note that the number of opcodes **MUST NOT** exceed u16::MAX.
assert_eq!(
68,
Instruction::<CurrentNetwork>::OPCODES.len(),
"Update me if the number of instructions changes."
);
}
}