snarkvm_synthesizer_program/logic/instruction/operation/
async_.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    Opcode,
    Operand,
    RegistersLoadCircuit,
    RegistersStore,
    RegistersStoreCircuit,
    Result,
    traits::{RegistersLoad, StackMatches, StackProgram},
};

use circuit::{Inject, Mode};
use console::{
    network::prelude::*,
    program::{Argument, FinalizeType, Future, Identifier, Locator, Register, RegisterType, Value},
};

/// Invokes the asynchronous call on the operands, producing a future.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Async<N: Network> {
    /// The function name.
    function_name: Identifier<N>,
    /// The operands.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
}

impl<N: Network> Async<N> {
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        Opcode::Async
    }

    /// Returns the function name.
    #[inline]
    pub const fn function_name(&self) -> &Identifier<N> {
        &self.function_name
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        // Sanity check that there is less than or equal to MAX_INPUTS operands.
        debug_assert!(self.operands.len() <= N::MAX_INPUTS, "`async` must have less than {} operands", N::MAX_INPUTS);
        // Return the operands.
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }
}

impl<N: Network> Async<N> {
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() > N::MAX_INPUTS {
            bail!("'{}' expects <= {} operands, found {} operands", Self::opcode(), N::MAX_INPUTS, self.operands.len())
        }

        // Load the operand values and check that they are valid arguments.
        let arguments: Vec<_> = self
            .operands
            .iter()
            .map(|operand| match registers.load(stack, operand)? {
                Value::Plaintext(plaintext) => Ok(Argument::Plaintext(plaintext)),
                Value::Record(_) => bail!("Cannot pass a record into an `async` instruction"),
                Value::Future(future) => Ok(Argument::Future(future)),
            })
            .try_collect()?;

        // Initialize a future.
        let future = Value::Future(Future::new(*stack.program_id(), *self.function_name(), arguments));
        // Store the future in the destination register.
        registers.store(stack, &self.destination, future)?;

        Ok(())
    }

    /// Executes the instruction.
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() > N::MAX_INPUTS {
            bail!("'{}' expects <= {} operands, found {} operands", Self::opcode(), N::MAX_INPUTS, self.operands.len())
        }

        // Load the operand values and check that they are valid arguments.
        let arguments: Vec<_> = self
            .operands
            .iter()
            .map(|operand| match registers.load_circuit(stack, operand)? {
                circuit::Value::Plaintext(plaintext) => Ok(circuit::Argument::Plaintext(plaintext)),
                circuit::Value::Record(_) => bail!("Cannot pass a record into an `async` instruction"),
                circuit::Value::Future(future) => Ok(circuit::Argument::Future(future)),
            })
            .try_collect()?;

        // Initialize a future.
        let future = circuit::Value::Future(circuit::Future::from(
            circuit::ProgramID::new(Mode::Constant, *stack.program_id()),
            circuit::Identifier::new(Mode::Constant, *self.function_name()),
            arguments,
        ));
        // Store the future in the destination register.
        registers.store_circuit(stack, &self.destination, future)?;

        Ok(())
    }

    /// Finalizes the instruction.
    #[inline]
    pub fn finalize(
        &self,
        _stack: &(impl StackMatches<N> + StackProgram<N>),
        _registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        bail!("Forbidden operation: Finalize cannot invoke 'async'.")
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(
        &self,
        stack: &impl StackProgram<N>,
        input_types: &[RegisterType<N>],
    ) -> Result<Vec<RegisterType<N>>> {
        // Ensure that an associated finalize block exists.
        let function = stack.get_function(self.function_name())?;
        let finalize = match function.finalize_logic() {
            Some(finalize) => finalize,
            None => bail!("'{}/{}' does not have a finalize block", stack.program_id(), self.function_name()),
        };

        // Check that the number of inputs matches the number of arguments.
        if input_types.len() != finalize.input_types().len() {
            bail!(
                "'{}/{}' finalize expects {} arguments, found {} arguments",
                stack.program_id(),
                self.function_name(),
                finalize.input_types().len(),
                input_types.len()
            );
        }

        // Check the type of each operand.
        for (input_type, finalize_type) in input_types.iter().zip_eq(finalize.input_types()) {
            match (input_type, finalize_type) {
                (RegisterType::Plaintext(input_type), FinalizeType::Plaintext(finalize_type)) => {
                    ensure!(
                        input_type == &finalize_type,
                        "'{}/{}' finalize expects a '{}' argument, found a '{}' argument",
                        stack.program_id(),
                        self.function_name(),
                        finalize_type,
                        input_type
                    );
                }
                (RegisterType::Record(..), _) => bail!("Attempted to pass a 'record' into 'async'"),
                (RegisterType::ExternalRecord(..), _) => {
                    bail!("Attempted to pass an 'external record' into 'async'")
                }
                (RegisterType::Future(input_locator), FinalizeType::Future(expected_locator)) => {
                    ensure!(
                        input_locator == &expected_locator,
                        "'{}/{}' async expects a '{}.future' argument, found a '{}.future' argument",
                        stack.program_id(),
                        self.function_name(),
                        expected_locator,
                        input_locator
                    );
                }
                (input_type, finalize_type) => bail!(
                    "'{}/{}' async expects a '{}' argument, found a '{}' argument",
                    stack.program_id(),
                    self.function_name(),
                    finalize_type,
                    input_type
                ),
            }
        }

        Ok(vec![RegisterType::Future(Locator::new(*stack.program_id(), *self.function_name()))])
    }
}

impl<N: Network> Parser for Async<N> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        /// Parses an operand.
        fn parse_operand<N: Network>(string: &str) -> ParserResult<Operand<N>> {
            // Parse the whitespace from the string.
            let (string, _) = Sanitizer::parse_whitespaces(string)?;
            // Parse the operand from the string.
            let (string, operand) = Operand::parse(string)?;
            // Return the remaining string and operand.
            Ok((string, operand))
        }

        // Parse the whitespace and comments from the string.
        let (string, _) = Sanitizer::parse(string)?;
        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the function name from the string.
        let (string, function_name) = Identifier::parse(string)?;
        // Parse the operands from the string.
        let (string, operands) = many0(parse_operand)(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the 'into' from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;

        // Ensure the number of operands is less than or equal to MAX_INPUTS.
        match operands.len() <= N::MAX_INPUTS {
            true => Ok((string, Self { function_name, operands, destination })),
            false => map_res(fail, |_: ParserResult<Self>| {
                Err(error(format!("The number of operands must be <= {}, found {}", N::MAX_INPUTS, operands.len())))
            })(string),
        }
    }
}

impl<N: Network> FromStr for Async<N> {
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network> Debug for Async<N> {
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network> Display for Async<N> {
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is less than or equal to MAX_INPUTS.
        if self.operands.len() > N::MAX_INPUTS {
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} {}", Self::opcode(), self.function_name)?;
        self.operands.iter().try_for_each(|operand| write!(f, " {operand}"))?;
        write!(f, " into {}", self.destination)
    }
}

impl<N: Network> FromBytes for Async<N> {
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Read the function name.
        let function_name = Identifier::read_le(&mut reader)?;

        // Read the number of operands.
        let num_operands = u8::read_le(&mut reader)?;
        // Ensure the number of operands is less than or equal to MAX_INPUTS.
        if num_operands as usize > N::MAX_INPUTS {
            return Err(error(format!("The number of operands must be <= {}, found {}", N::MAX_INPUTS, num_operands)));
        }

        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(num_operands as usize);
        // Read the operands.
        for _ in 0..(num_operands as usize) {
            operands.push(Operand::read_le(&mut reader)?);
        }

        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;

        // Return the operation.
        Ok(Self { function_name, operands, destination })
    }
}

impl<N: Network> ToBytes for Async<N> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is less than or equal to MAX_INPUTS.
        if self.operands.len() > N::MAX_INPUTS {
            return Err(error(format!(
                "The number of operands must be <= {}, found {}",
                N::MAX_INPUTS,
                self.operands.len()
            )));
        }
        // Write the function name.
        self.function_name.write_le(&mut writer)?;
        // Write the number of operands.
        u8::try_from(self.operands.len()).map_err(|e| error(e.to_string()))?.write_le(&mut writer)?;
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    // use circuit::AleoV0;
    use console::network::MainnetV0;

    type CurrentNetwork = MainnetV0;
    // type CurrentAleo = AleoV0;
    //
    // /// Samples the stack. Note: Do not replicate this for real program use, it is insecure.
    // fn sample_stack(
    //     opcode: Opcode,
    //     type_a: LiteralType,
    //     type_b: LiteralType,
    //     mode_a: circuit::Mode,
    //     mode_b: circuit::Mode,
    // ) -> Result<(Stack<CurrentNetwork>, Vec<Operand<CurrentNetwork>>)> {
    //     use crate::{Process, Program};
    //     use console::program::Identifier;
    //
    //     // Initialize the opcode.
    //     let opcode = opcode.to_string();
    //
    //     // Initialize the function name.
    //     let function_name = Identifier::<CurrentNetwork>::from_str("run")?;
    //
    //     // Initialize the registers.
    //     let r0 = Register::Locator(0);
    //     let r1 = Register::Locator(1);
    //
    //     // Initialize the program.
    //     let program = Program::from_str(&format!(
    //         "program testing.aleo;
    //         function {function_name}:
    //             input {r0} as {type_a}.{mode_a};
    //             input {r1} as {type_b}.{mode_b};
    //             {opcode} {r0} {r1};
    //     "
    //     ))?;
    //
    //     // Initialize the operands.
    //     let operand_a = Operand::Register(r0);
    //     let operand_b = Operand::Register(r1);
    //     let operands = vec![operand_a, operand_b];
    //
    //     // Initialize the stack.
    //     let stack = Stack::new(&Process::load()?, &program)?;
    //
    //     Ok((stack, operands))
    // }
    //
    // /// Samples the registers. Note: Do not replicate this for real program use, it is insecure.
    // fn sample_registers(
    //     stack: &Stack<CurrentNetwork>,
    //     literal_a: &Literal<CurrentNetwork>,
    //     literal_b: &Literal<CurrentNetwork>,
    // ) -> Result<Registers<CurrentNetwork, CurrentAleo>> {
    //     use crate::{Authorization, CallStack};
    //     use console::program::{Identifier, Plaintext, Value};
    //
    //     // Initialize the function name.
    //     let function_name = Identifier::from_str("run")?;
    //
    //     // Initialize the registers.
    //     let mut registers = Registers::<CurrentNetwork, CurrentAleo>::new(
    //         CallStack::evaluate(Authorization::new(&[]))?,
    //         stack.get_register_types(&function_name)?.clone(),
    //     );
    //
    //     // Initialize the registers.
    //     let r0 = Register::Locator(0);
    //     let r1 = Register::Locator(1);
    //
    //     // Initialize the console values.
    //     let value_a = Value::Plaintext(Plaintext::from(literal_a));
    //     let value_b = Value::Plaintext(Plaintext::from(literal_b));
    //
    //     // Store the values in the console registers.
    //     registers.store(stack, &r0, value_a.clone())?;
    //     registers.store(stack, &r1, value_b.clone())?;
    //
    //     Ok(registers)
    // }
    //
    // fn check_finalize(
    //     operation: impl FnOnce(Vec<Operand<CurrentNetwork>>) -> FinalizeOperation<CurrentNetwork, VARIANT>,
    //     opcode: Opcode,
    //     literal_a: &Literal<CurrentNetwork>,
    //     literal_b: &Literal<CurrentNetwork>,
    //     mode_a: &circuit::Mode,
    //     mode_b: &circuit::Mode,
    // ) {
    //     // Initialize the types.
    //     let type_a = literal_a.to_type();
    //     let type_b = literal_b.to_type();
    //     assert_eq!(type_a, type_b, "The two literals must be the *same* type for this test");
    //
    //     // Initialize the stack.
    //     let (stack, operands) = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b).unwrap();
    //     // Initialize the operation.
    //     let operation = operation(operands);
    //
    //     /* First, check the operation *succeeds* when both operands are `literal_a.mode_a`. */
    //     {
    //         // Attempt to compute the valid operand case.
    //         let mut registers = sample_registers(&stack, literal_a, literal_a).unwrap();
    //         let result_a = operation.evaluate(&stack, &mut registers);
    //
    //         // Ensure the result is correct.
    //         match VARIANT {
    //             0 => assert!(result_a.is_ok(), "Instruction '{operation}' failed (console): {literal_a} {literal_a}"),
    //             _ => panic!("Found an invalid 'finalize' variant in the test"),
    //         }
    //     }
    //     /* Next, check the mismatching literals *fail*. */
    //     if literal_a != literal_b {
    //         // Attempt to compute the valid operand case.
    //         let mut registers = sample_registers(&stack, literal_a, literal_b).unwrap();
    //         let result_a = operation.evaluate(&stack, &mut registers);
    //
    //         // Ensure the result is correct.
    //         match VARIANT {
    //             0 => assert!(
    //                 result_a.is_err(),
    //                 "Instruction '{operation}' should have failed (console): {literal_a} {literal_b}"
    //             ),
    //             _ => panic!("Found an invalid 'finalize' variant in the test"),
    //         }
    //     }
    // }
    //
    // fn check_finalize_fails(
    //     opcode: Opcode,
    //     literal_a: &Literal<CurrentNetwork>,
    //     literal_b: &Literal<CurrentNetwork>,
    //     mode_a: &circuit::Mode,
    //     mode_b: &circuit::Mode,
    // ) {
    //     // Initialize the types.
    //     let type_a = literal_a.to_type();
    //     let type_b = literal_b.to_type();
    //     assert_ne!(type_a, type_b, "The two literals must be *different* types for this test");
    //
    //     // If the types mismatch, ensure the stack fails to initialize.
    //     let result = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b);
    //     assert!(
    //         result.is_err(),
    //         "Stack should have failed to initialize for: {opcode} {type_a}.{mode_a} {type_b}.{mode_b}"
    //     );
    // }
    //
    // #[test]
    // fn test_finalize_eq_succeeds() {
    //     // Initialize the operation.
    //     let operation = |operands| Async::<CurrentNetwork> { operands };
    //     // Initialize the opcode.
    //     let opcode = Async::<CurrentNetwork>::opcode();
    //
    //     let mut rng = TestRng::default();
    //
    //     // Prepare the test.
    //     let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
    //     let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
    //     let modes_a = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
    //     let modes_b = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
    //
    //     for (literal_a, literal_b) in literals_a.iter().zip_eq(literals_b.iter()) {
    //         for mode_a in &modes_a {
    //             for mode_b in &modes_b {
    //                 // Check the operation.
    //                 check_finalize(operation, opcode, literal_a, literal_b, mode_a, mode_b);
    //             }
    //         }
    //     }
    // }
    //
    // #[test]
    // fn test_finalize_evaluate() {
    //     use rayon::prelude::*;
    //
    //     // Initialize the opcode.
    //     let opcode = Async::<CurrentNetwork>::opcode();
    //
    //     let mut rng = TestRng::default();
    //
    //     // Prepare the test.
    //     let literals_a = crate::sample_literals!(CurrentNetwork, &mut rng);
    //     let literals_b = crate::sample_literals!(CurrentNetwork, &mut rng);
    //     let modes_a = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
    //     let modes_b = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
    //
    //     literals_a.par_iter().for_each(|literal_a| {
    //         for literal_b in &literals_b {
    //             for mode_a in &modes_a {
    //                 for mode_b in &modes_b {
    //                     if literal_a.to_type() != literal_b.to_type() {
    //                         // Check the operation fails.
    //                         check_finalize_fails(opcode, literal_a, literal_b, mode_a, mode_b);
    //                     }
    //                 }
    //             }
    //         }
    //     });
    // }

    #[test]
    fn test_parse() {
        let expected = "async foo r0 r1 into r3";
        let (string, async_) = Async::<CurrentNetwork>::parse(expected).unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(expected, async_.to_string(), "Display.fmt() did not match expected: '{string}'");
        assert_eq!(async_.operands.len(), 2, "The number of operands is incorrect");
        assert_eq!(async_.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(async_.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
        assert_eq!(async_.destination, Register::Locator(3), "The destination is incorrect");
    }
}