snarkvm_synthesizer_program/logic/instruction/operation/
cast.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    Opcode,
    Operand,
    traits::{
        RegistersLoad,
        RegistersLoadCircuit,
        RegistersSigner,
        RegistersSignerCircuit,
        RegistersStore,
        RegistersStoreCircuit,
        StackMatches,
        StackProgram,
    },
};
use console::{
    network::prelude::*,
    program::{
        ArrayType,
        Entry,
        EntryType,
        Identifier,
        Literal,
        LiteralType,
        Locator,
        Owner,
        Plaintext,
        PlaintextType,
        Record,
        Register,
        RegisterType,
        Value,
        ValueType,
    },
    types::Field,
};

use indexmap::IndexMap;

#[derive(Clone, PartialEq, Eq, Hash)]
/// The type of the cast operation.
pub enum CastType<N: Network> {
    GroupXCoordinate,
    GroupYCoordinate,
    Plaintext(PlaintextType<N>),
    Record(Identifier<N>),
    ExternalRecord(Locator<N>),
}

impl<N: Network> Parser for CastType<N> {
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the cast type from the string.
        alt((
            map(tag("group.x"), |_| Self::GroupXCoordinate),
            map(tag("group.y"), |_| Self::GroupYCoordinate),
            map(pair(Locator::parse, tag(".record")), |(locator, _)| Self::ExternalRecord(locator)),
            map(pair(Identifier::parse, tag(".record")), |(identifier, _)| Self::Record(identifier)),
            map(PlaintextType::parse, Self::Plaintext),
        ))(string)
    }
}

impl<N: Network> Display for CastType<N> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        match self {
            Self::GroupXCoordinate => write!(f, "group.x"),
            Self::GroupYCoordinate => write!(f, "group.y"),
            Self::Plaintext(plaintext_type) => write!(f, "{}", plaintext_type),
            Self::Record(identifier) => write!(f, "{}.record", identifier),
            Self::ExternalRecord(locator) => write!(f, "{}.record", locator),
        }
    }
}

impl<N: Network> Debug for CastType<N> {
    /// Prints the cast type as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network> FromStr for CastType<N> {
    type Err = Error;

    /// Returns a cast type from a string literal.
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network> ToBytes for CastType<N> {
    /// Writes the cast type to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        match self {
            Self::GroupXCoordinate => 0u8.write_le(&mut writer),
            Self::GroupYCoordinate => 1u8.write_le(&mut writer),
            CastType::Plaintext(plaintext_type) => {
                2u8.write_le(&mut writer)?;
                plaintext_type.write_le(&mut writer)
            }
            CastType::Record(identifier) => {
                3u8.write_le(&mut writer)?;
                identifier.write_le(&mut writer)
            }
            CastType::ExternalRecord(locator) => {
                4u8.write_le(&mut writer)?;
                locator.write_le(&mut writer)
            }
        }
    }
}

impl<N: Network> FromBytes for CastType<N> {
    /// Reads the cast type from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        let variant = u8::read_le(&mut reader)?;
        match variant {
            0 => Ok(Self::GroupXCoordinate),
            1 => Ok(Self::GroupYCoordinate),
            2 => Ok(Self::Plaintext(PlaintextType::read_le(&mut reader)?)),
            3 => Ok(Self::Record(Identifier::read_le(&mut reader)?)),
            4 => Ok(Self::ExternalRecord(Locator::read_le(&mut reader)?)),
            5.. => Err(error(format!("Failed to deserialize cast type variant {variant}"))),
        }
    }
}

/// The `cast` instruction.
pub type Cast<N> = CastOperation<N, { CastVariant::Cast as u8 }>;
/// The `cast.lossy` instruction.
pub type CastLossy<N> = CastOperation<N, { CastVariant::CastLossy as u8 }>;

/// The variant of the cast operation.
enum CastVariant {
    Cast,
    CastLossy,
}

/// Casts the operands into the declared type.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct CastOperation<N: Network, const VARIANT: u8> {
    /// The operands.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
    /// The cast type.
    cast_type: CastType<N>,
}

impl<N: Network, const VARIANT: u8> CastOperation<N, VARIANT> {
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        Opcode::Cast(match VARIANT {
            0 => "cast",
            1 => "cast.lossy",
            2.. => panic!("Invalid cast variant"),
        })
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }

    /// Returns the cast type.
    #[inline]
    pub const fn cast_type(&self) -> &CastType<N> {
        &self.cast_type
    }
}

impl<N: Network, const VARIANT: u8> CastOperation<N, VARIANT> {
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersSigner<N> + RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // If the variant is `cast.lossy`, then check that the `cast_type` is a `PlaintextType::Literal`.
        if VARIANT == CastVariant::CastLossy as u8 {
            ensure!(
                matches!(self.cast_type, CastType::Plaintext(PlaintextType::Literal(..))),
                "`cast.lossy` is only supported for casting to a literal type"
            )
        }

        // Load the operands values.
        let inputs: Vec<_> = self.operands.iter().map(|operand| registers.load(stack, operand)).try_collect()?;

        match &self.cast_type {
            CastType::GroupXCoordinate => {
                ensure!(inputs.len() == 1, "Casting to a group x-coordinate requires exactly 1 operand");
                let field = match &inputs[0] {
                    Value::Plaintext(Plaintext::Literal(Literal::Group(group), ..)) => group.to_x_coordinate(),
                    _ => bail!("Casting to a group x-coordinate requires a group element"),
                };
                registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(Literal::Field(field))))
            }
            CastType::GroupYCoordinate => {
                ensure!(inputs.len() == 1, "Casting to a group y-coordinate requires exactly 1 operand");
                let field = match &inputs[0] {
                    Value::Plaintext(Plaintext::Literal(Literal::Group(group), ..)) => group.to_y_coordinate(),
                    _ => bail!("Casting to a group y-coordinate requires a group element"),
                };
                registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(Literal::Field(field))))
            }
            CastType::Plaintext(PlaintextType::Literal(literal_type)) => {
                ensure!(inputs.len() == 1, "Casting to a literal requires exactly 1 operand");
                let value = match &inputs[0] {
                    Value::Plaintext(Plaintext::Literal(literal, ..)) => match VARIANT {
                        0 => literal.cast(*literal_type)?,
                        1 => literal.cast_lossy(*literal_type)?,
                        2.. => unreachable!("Invalid cast variant"),
                    },
                    _ => bail!("Casting to a literal requires a literal"),
                };
                registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(value)))
            }
            CastType::Plaintext(PlaintextType::Struct(struct_name)) => {
                self.cast_to_struct(stack, registers, *struct_name, inputs)
            }
            CastType::Plaintext(PlaintextType::Array(array_type)) => {
                self.cast_to_array(stack, registers, array_type, inputs)
            }
            CastType::Record(record_name) => {
                // Ensure the operands length is at least the minimum.
                if inputs.len() < N::MIN_RECORD_ENTRIES {
                    bail!("Casting to a record requires at least {} operand", N::MIN_RECORD_ENTRIES)
                }

                // Retrieve the struct and ensure it is defined in the program.
                let record_type = stack.program().get_record(record_name)?;

                // Ensure that the number of operands is equal to the number of record entries, including the `owner`.
                if inputs.len() != record_type.entries().len() + 1 {
                    bail!(
                        "Casting to the record {} requires {} operands, but {} were provided",
                        record_type.name(),
                        record_type.entries().len() + 1,
                        inputs.len()
                    )
                }

                // Initialize the record owner.
                let owner: Owner<N, Plaintext<N>> = match &inputs[0] {
                    // Ensure the entry is an address.
                    Value::Plaintext(Plaintext::Literal(Literal::Address(owner), ..)) => {
                        match record_type.owner().is_public() {
                            true => Owner::Public(*owner),
                            false => Owner::Private(Plaintext::Literal(Literal::Address(*owner), Default::default())),
                        }
                    }
                    _ => bail!("Invalid record 'owner'"),
                };

                // Initialize the record entries.
                let mut entries = IndexMap::new();
                for (entry, (entry_name, entry_type)) in
                    inputs.iter().skip(N::MIN_RECORD_ENTRIES).zip_eq(record_type.entries())
                {
                    // Compute the plaintext type.
                    let plaintext_type = entry_type.plaintext_type();
                    // Retrieve the plaintext value from the entry.
                    let plaintext = match entry {
                        Value::Plaintext(plaintext) => {
                            // Ensure the entry matches the register type.
                            stack.matches_plaintext(plaintext, plaintext_type)?;
                            // Output the plaintext.
                            plaintext.clone()
                        }
                        // Ensure the record entry is not a record.
                        Value::Record(..) => bail!("Casting a record into a record entry is illegal"),
                        // Ensure the record entry is not a future.
                        Value::Future(..) => bail!("Casting a future into a record entry is illegal"),
                    };
                    // Append the entry to the record entries.
                    match entry_type {
                        EntryType::Constant(..) => entries.insert(*entry_name, Entry::Constant(plaintext)),
                        EntryType::Public(..) => entries.insert(*entry_name, Entry::Public(plaintext)),
                        EntryType::Private(..) => entries.insert(*entry_name, Entry::Private(plaintext)),
                    };
                }

                // Prepare the index as a field element.
                let index = Field::from_u64(self.destination.locator());
                // Compute the randomizer as `HashToScalar(tvk || index)`.
                let randomizer = N::hash_to_scalar_psd2(&[registers.tvk()?, index])?;
                // Compute the nonce from the randomizer.
                let nonce = N::g_scalar_multiply(&randomizer);

                // Construct the record.
                let record = Record::<N, Plaintext<N>>::from_plaintext(owner, entries, nonce)?;
                // Store the record.
                registers.store(stack, &self.destination, Value::Record(record))
            }
            CastType::ExternalRecord(_locator) => {
                bail!("Illegal operation: Cannot cast to an external record.")
            }
        }
    }

    /// Executes the instruction.
    #[inline]
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersSignerCircuit<N, A> + RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
    ) -> Result<()> {
        // If the variant is `cast.lossy`, then check that the `cast_type` is a `PlaintextType::Literal`.
        if VARIANT == CastVariant::CastLossy as u8 {
            ensure!(
                matches!(self.cast_type, CastType::Plaintext(PlaintextType::Literal(..))),
                "`cast.lossy` is only supported for casting to a literal type"
            )
        }

        use circuit::{Eject, Inject};

        // Load the operands values.
        let inputs: Vec<_> =
            self.operands.iter().map(|operand| registers.load_circuit(stack, operand)).try_collect()?;

        match &self.cast_type {
            CastType::GroupXCoordinate => {
                ensure!(inputs.len() == 1, "Casting to a group x-coordinate requires exactly 1 operand");
                let field = match &inputs[0] {
                    circuit::Value::Plaintext(circuit::Plaintext::Literal(circuit::Literal::Group(group), ..)) => {
                        group.to_x_coordinate()
                    }
                    _ => bail!("Casting to a group x-coordinate requires a group element"),
                };
                registers.store_circuit(
                    stack,
                    &self.destination,
                    circuit::Value::Plaintext(circuit::Plaintext::from(circuit::Literal::Field(field))),
                )
            }
            CastType::GroupYCoordinate => {
                ensure!(inputs.len() == 1, "Casting to a group y-coordinate requires exactly 1 operand");
                let field = match &inputs[0] {
                    circuit::Value::Plaintext(circuit::Plaintext::Literal(circuit::Literal::Group(group), ..)) => {
                        group.to_y_coordinate()
                    }
                    _ => bail!("Casting to a group y-coordinate requires a group element"),
                };
                registers.store_circuit(
                    stack,
                    &self.destination,
                    circuit::Value::Plaintext(circuit::Plaintext::from(circuit::Literal::Field(field))),
                )
            }
            CastType::Plaintext(PlaintextType::Literal(literal_type)) => {
                ensure!(inputs.len() == 1, "Casting to a literal requires exactly 1 operand");
                let value = match &inputs[0] {
                    circuit::Value::Plaintext(circuit::Plaintext::Literal(literal, ..)) => match VARIANT {
                        0 => literal.cast(*literal_type)?,
                        1 => literal.cast_lossy(*literal_type)?,
                        2.. => unreachable!("Invalid cast variant"),
                    },
                    _ => bail!("Casting to a literal requires a literal"),
                };
                registers.store_circuit(
                    stack,
                    &self.destination,
                    circuit::Value::Plaintext(circuit::Plaintext::from(value)),
                )
            }
            CastType::Plaintext(PlaintextType::Struct(struct_)) => {
                // Ensure the operands length is at least the minimum.
                if inputs.len() < N::MIN_STRUCT_ENTRIES {
                    bail!("Casting to a struct requires at least {} operand(s)", N::MIN_STRUCT_ENTRIES)
                }
                // Ensure the number of members does not exceed the maximum.
                if inputs.len() > N::MAX_STRUCT_ENTRIES {
                    bail!("Casting to struct '{struct_}' cannot exceed {} members", N::MAX_STRUCT_ENTRIES)
                }

                // Retrieve the struct and ensure it is defined in the program.
                let struct_ = stack.program().get_struct(struct_)?;

                // Ensure that the number of operands is equal to the number of struct members.
                if inputs.len() != struct_.members().len() {
                    bail!(
                        "Casting to the struct {} requires {} operands, but {} were provided",
                        struct_.name(),
                        struct_.members().len(),
                        inputs.len()
                    )
                }

                // Initialize the struct members.
                let mut members = IndexMap::new();
                for (member, (member_name, member_type)) in inputs.iter().zip_eq(struct_.members()) {
                    // Retrieve the plaintext value from the entry.
                    let plaintext = match member {
                        circuit::Value::Plaintext(plaintext) => {
                            // Ensure the member matches the register type.
                            stack.matches_plaintext(&plaintext.eject_value(), member_type)?;
                            // Output the plaintext.
                            plaintext.clone()
                        }
                        // Ensure the struct member is not a record.
                        circuit::Value::Record(..) => {
                            bail!("Casting a record into a struct member is illegal")
                        }
                        // Ensure the struct member is not a future.
                        circuit::Value::Future(..) => {
                            bail!("Casting a future into a struct member is illegal")
                        }
                    };
                    // Append the member to the struct members.
                    members.insert(circuit::Identifier::constant(*member_name), plaintext);
                }

                // Construct the struct.
                let struct_ = circuit::Plaintext::Struct(members, Default::default());
                // Store the struct.
                registers.store_circuit(stack, &self.destination, circuit::Value::Plaintext(struct_))
            }
            CastType::Plaintext(PlaintextType::Array(array_type)) => {
                // Ensure the operands length is at least the minimum.
                if inputs.len() < N::MIN_ARRAY_ELEMENTS {
                    bail!("Casting to an array requires at least {} operand(s)", N::MIN_ARRAY_ELEMENTS)
                }
                // Ensure the number of elements does not exceed the maximum.
                if inputs.len() > N::MAX_ARRAY_ELEMENTS {
                    bail!("Casting to array '{array_type}' cannot exceed {} elements", N::MAX_ARRAY_ELEMENTS)
                }

                // Ensure that the number of operands is equal to the number of array entries.
                if inputs.len() != **array_type.length() as usize {
                    bail!(
                        "Casting to the array {} requires {} operands, but {} were provided",
                        array_type,
                        array_type.length(),
                        inputs.len()
                    )
                }

                // Initialize the elements.
                let mut elements = Vec::with_capacity(inputs.len());
                for element in inputs.iter() {
                    // Retrieve the plaintext value from the element.
                    let plaintext = match element {
                        circuit::Value::Plaintext(plaintext) => {
                            // Ensure the plaintext matches the element type.
                            stack.matches_plaintext(&plaintext.eject_value(), array_type.next_element_type())?;
                            // Output the plaintext.
                            plaintext.clone()
                        }
                        // Ensure the element is not a record.
                        circuit::Value::Record(..) => bail!("Casting a record into an array element is illegal"),
                        // Ensure the element is not a future.
                        circuit::Value::Future(..) => bail!("Casting a future into an array element is illegal"),
                    };
                    // Store the element.
                    elements.push(plaintext);
                }

                // Construct the array.
                let array = circuit::Plaintext::Array(elements, Default::default());
                // Store the array.
                registers.store_circuit(stack, &self.destination, circuit::Value::Plaintext(array))
            }
            CastType::Record(record_name) => {
                // Ensure the operands length is at least the minimum.
                if inputs.len() < N::MIN_RECORD_ENTRIES {
                    bail!("Casting to a record requires at least {} operand(s)", N::MIN_RECORD_ENTRIES)
                }
                // Ensure the number of entries does not exceed the maximum.
                if inputs.len() > N::MAX_RECORD_ENTRIES {
                    bail!("Casting to record '{record_name}' cannot exceed {} members", N::MAX_RECORD_ENTRIES)
                }

                // Retrieve the struct and ensure it is defined in the program.
                let record_type = stack.program().get_record(record_name)?;

                // Ensure that the number of operands is equal to the number of record entries, including the `owner`.
                if inputs.len() != record_type.entries().len() + 1 {
                    bail!(
                        "Casting to the record {} requires {} operands, but {} were provided",
                        record_type.name(),
                        record_type.entries().len() + 1,
                        inputs.len()
                    )
                }

                // Initialize the record owner.
                let owner: circuit::Owner<A, circuit::Plaintext<A>> = match &inputs[0] {
                    // Ensure the entry is an address.
                    circuit::Value::Plaintext(circuit::Plaintext::Literal(circuit::Literal::Address(owner), ..)) => {
                        match record_type.owner().is_public() {
                            true => circuit::Owner::Public(owner.clone()),
                            false => circuit::Owner::Private(circuit::Plaintext::Literal(
                                circuit::Literal::Address(owner.clone()),
                                Default::default(),
                            )),
                        }
                    }
                    _ => bail!("Invalid record 'owner'"),
                };

                // Initialize the record entries.
                let mut entries = IndexMap::new();
                for (entry, (entry_name, entry_type)) in
                    inputs.iter().skip(N::MIN_RECORD_ENTRIES).zip_eq(record_type.entries())
                {
                    // Compute the register type.
                    let register_type = RegisterType::from(ValueType::from(entry_type.clone()));
                    // Retrieve the plaintext value from the entry.
                    let plaintext = match entry {
                        circuit::Value::Plaintext(plaintext) => {
                            // Ensure the entry matches the register type.
                            stack.matches_register_type(
                                &circuit::Value::Plaintext(plaintext.clone()).eject_value(),
                                &register_type,
                            )?;
                            // Output the plaintext.
                            plaintext.clone()
                        }
                        // Ensure the record entry is not a record.
                        circuit::Value::Record(..) => bail!("Casting a record into a record entry is illegal"),
                        // Ensure the record entry is not a future.
                        circuit::Value::Future(..) => bail!("Casting a future into a record entry is illegal"),
                    };
                    // Construct the entry name constant circuit.
                    let entry_name = circuit::Identifier::constant(*entry_name);
                    // Append the entry to the record entries.
                    match entry_type {
                        EntryType::Constant(..) => entries.insert(entry_name, circuit::Entry::Constant(plaintext)),
                        EntryType::Public(..) => entries.insert(entry_name, circuit::Entry::Public(plaintext)),
                        EntryType::Private(..) => entries.insert(entry_name, circuit::Entry::Private(plaintext)),
                    };
                }

                // Prepare the index as a constant field element.
                let index = circuit::Field::constant(Field::from_u64(self.destination.locator()));
                // Compute the randomizer as `HashToScalar(tvk || index)`.
                let randomizer = A::hash_to_scalar_psd2(&[registers.tvk_circuit()?, index]);
                // Compute the nonce from the randomizer.
                let nonce = A::g_scalar_multiply(&randomizer);

                // Construct the record.
                let record = circuit::Record::<A, circuit::Plaintext<A>>::from_plaintext(owner, entries, nonce)?;
                // Store the record.
                registers.store_circuit(stack, &self.destination, circuit::Value::Record(record))
            }
            CastType::ExternalRecord(_locator) => {
                bail!("Illegal operation: Cannot cast to an external record.")
            }
        }
    }

    /// Finalizes the instruction.
    #[inline]
    pub fn finalize(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // If the variant is `cast.lossy`, then check that the `cast_type` is a `PlaintextType::Literal`.
        if VARIANT == CastVariant::CastLossy as u8 {
            ensure!(
                matches!(self.cast_type, CastType::Plaintext(PlaintextType::Literal(..))),
                "`cast.lossy` is only supported for casting to a literal type"
            )
        }

        // Load the operands values.
        let inputs: Vec<_> = self.operands.iter().map(|operand| registers.load(stack, operand)).try_collect()?;

        match &self.cast_type {
            CastType::GroupXCoordinate => {
                ensure!(inputs.len() == 1, "Casting to a group x-coordinate requires exactly 1 operand");
                let field = match &inputs[0] {
                    Value::Plaintext(Plaintext::Literal(Literal::Group(group), ..)) => group.to_x_coordinate(),
                    _ => bail!("Casting to a group x-coordinate requires a group element"),
                };
                registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(Literal::Field(field))))
            }
            CastType::GroupYCoordinate => {
                ensure!(inputs.len() == 1, "Casting to a group y-coordinate requires exactly 1 operand");
                let field = match &inputs[0] {
                    Value::Plaintext(Plaintext::Literal(Literal::Group(group), ..)) => group.to_y_coordinate(),
                    _ => bail!("Casting to a group y-coordinate requires a group element"),
                };
                registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(Literal::Field(field))))
            }
            CastType::Plaintext(PlaintextType::Literal(literal_type)) => {
                ensure!(inputs.len() == 1, "Casting to a literal requires exactly 1 operand");
                let value = match &inputs[0] {
                    Value::Plaintext(Plaintext::Literal(literal, ..)) => match VARIANT {
                        0 => literal.cast(*literal_type)?,
                        1 => literal.cast_lossy(*literal_type)?,
                        2.. => unreachable!("Invalid cast variant"),
                    },
                    _ => bail!("Casting to a literal requires a literal"),
                };
                registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(value)))
            }
            CastType::Plaintext(PlaintextType::Struct(struct_name)) => {
                self.cast_to_struct(stack, registers, *struct_name, inputs)
            }
            CastType::Plaintext(PlaintextType::Array(array_type)) => {
                self.cast_to_array(stack, registers, array_type, inputs)
            }
            CastType::Record(_record_name) => {
                bail!("Illegal operation: Cannot cast to a record in a finalize block.")
            }
            CastType::ExternalRecord(_locator) => {
                bail!("Illegal operation: Cannot cast to an external record.")
            }
        }
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(
        &self,
        stack: &impl StackProgram<N>,
        input_types: &[RegisterType<N>],
    ) -> Result<Vec<RegisterType<N>>> {
        // If the variant is `cast.lossy`, then check that the `cast_type` is a `PlaintextType::Literal`.
        if VARIANT == CastVariant::CastLossy as u8 {
            ensure!(
                matches!(self.cast_type, CastType::Plaintext(PlaintextType::Literal(..))),
                "`cast.lossy` is only supported for casting to a literal type"
            )
        }

        // Ensure the number of operands is correct.
        ensure!(
            input_types.len() == self.operands.len(),
            "Instruction '{}' expects {} operands, found {} operands",
            Self::opcode(),
            input_types.len(),
            self.operands.len(),
        );

        // Ensure the output type is defined in the program.
        match &self.cast_type {
            CastType::GroupXCoordinate | CastType::GroupYCoordinate => {
                ensure!(input_types.len() == 1, "Casting to a group coordinate requires exactly 1 operand");
                ensure!(
                    matches!(input_types[0], RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Group))),
                    "Type mismatch: expected 'group', found '{}'",
                    input_types[0]
                );
            }
            CastType::Plaintext(PlaintextType::Literal(..)) => {
                ensure!(input_types.len() == 1, "Casting to a literal requires exactly 1 operand");
            }
            CastType::Plaintext(PlaintextType::Struct(struct_name)) => {
                // Retrieve the struct and ensure it is defined in the program.
                let struct_ = stack.program().get_struct(struct_name)?;

                // Ensure the input types length is at least the minimum.
                if input_types.len() < N::MIN_STRUCT_ENTRIES {
                    bail!("Casting to a struct requires at least {} operand(s)", N::MIN_STRUCT_ENTRIES)
                }
                // Ensure the number of members does not exceed the maximum.
                if input_types.len() > N::MAX_STRUCT_ENTRIES {
                    bail!("Casting to struct '{struct_}' cannot exceed {} members", N::MAX_STRUCT_ENTRIES)
                }

                // Ensure that the number of input types is equal to the number of struct members.
                ensure!(
                    input_types.len() == struct_.members().len(),
                    "Casting to the struct {} requires {} operands, but {} were provided",
                    struct_.name(),
                    struct_.members().len(),
                    input_types.len()
                );
                // Ensure the input types match the struct.
                for ((_, member_type), input_type) in struct_.members().iter().zip_eq(input_types) {
                    match input_type {
                        // Ensure the plaintext type matches the member type.
                        RegisterType::Plaintext(plaintext_type) => {
                            ensure!(
                                member_type == plaintext_type,
                                "Struct '{struct_name}' member type mismatch: expected '{member_type}', found '{plaintext_type}'"
                            )
                        }
                        // Ensure the input type cannot be a record (this is unsupported behavior).
                        RegisterType::Record(record_name) => bail!(
                            "Struct '{struct_name}' member type mismatch: expected '{member_type}', found record '{record_name}'"
                        ),
                        // Ensure the input type cannot be an external record (this is unsupported behavior).
                        RegisterType::ExternalRecord(locator) => bail!(
                            "Struct '{struct_name}' member type mismatch: expected '{member_type}', found external record '{locator}'"
                        ),
                        // Ensure the input type cannot be a future (this is unsupported behavior).
                        RegisterType::Future(..) => {
                            bail!("Struct '{struct_name}' member type mismatch: expected '{member_type}', found future")
                        }
                    }
                }
            }
            CastType::Plaintext(PlaintextType::Array(array_type)) => {
                // Ensure the input types length is at least the minimum.
                if input_types.len() < N::MIN_ARRAY_ELEMENTS {
                    bail!("Casting to an array requires at least {} operand(s)", N::MIN_ARRAY_ELEMENTS)
                }
                // Ensure the number of elements does not exceed the maximum.
                if input_types.len() > N::MAX_ARRAY_ELEMENTS {
                    bail!("Casting to array '{array_type}' cannot exceed {} elements", N::MAX_ARRAY_ELEMENTS)
                }

                // Ensure that the number of input types is equal to the number of array entries.
                if input_types.len() != **array_type.length() as usize {
                    bail!(
                        "Casting to the array {} requires {} operands, but {} were provided",
                        array_type,
                        array_type.length(),
                        input_types.len()
                    )
                }

                // Ensure the input types match the element type.
                for input_type in input_types {
                    match input_type {
                        // Ensure the plaintext type matches the member type.
                        RegisterType::Plaintext(plaintext_type) => {
                            ensure!(
                                plaintext_type == array_type.next_element_type(),
                                "Array element type mismatch: expected '{}', found '{plaintext_type}'",
                                array_type.next_element_type()
                            )
                        }
                        // Ensure the input type cannot be a record (this is unsupported behavior).
                        RegisterType::Record(record_name) => bail!(
                            "Array element type mismatch: expected '{}', found record '{record_name}'",
                            array_type.next_element_type()
                        ),
                        // Ensure the input type cannot be an external record (this is unsupported behavior).
                        RegisterType::ExternalRecord(locator) => bail!(
                            "Array element type mismatch: expected '{}', found external record '{locator}'",
                            array_type.next_element_type()
                        ),
                        // Ensure the input type cannot be a future (this is unsupported behavior).
                        RegisterType::Future(..) => bail!(
                            "Array element type mismatch: expected '{}', found future",
                            array_type.next_element_type()
                        ),
                    }
                }
            }
            CastType::Record(record_name) => {
                // Retrieve the record type and ensure is defined in the program.
                let record = stack.program().get_record(record_name)?;

                // Ensure the input types length is at least the minimum.
                if input_types.len() < N::MIN_RECORD_ENTRIES {
                    bail!("Casting to a record requires at least {} operand(s)", N::MIN_RECORD_ENTRIES)
                }
                // Ensure the number of entries does not exceed the maximum.
                if input_types.len() > N::MAX_RECORD_ENTRIES {
                    bail!("Casting to record '{record_name}' cannot exceed {} members", N::MAX_RECORD_ENTRIES)
                }

                // Ensure that the number of input types is equal to the number of record entries, including the `owner`.
                ensure!(
                    input_types.len() == record.entries().len() + 1,
                    "Casting to the record {} requires {} operands, but {} were provided",
                    record.name(),
                    record.entries().len() + 1,
                    input_types.len()
                );
                // Ensure the first input type is an address.
                ensure!(
                    input_types[0] == RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Address)),
                    "Casting to a record requires the first operand to be an address"
                );

                // Ensure the input types match the record.
                for (input_type, (_, entry_type)) in
                    input_types.iter().skip(N::MIN_RECORD_ENTRIES).zip_eq(record.entries())
                {
                    match input_type {
                        // Ensure the plaintext type matches the entry type.
                        RegisterType::Plaintext(plaintext_type) => match entry_type {
                            EntryType::Constant(entry_type)
                            | EntryType::Public(entry_type)
                            | EntryType::Private(entry_type) => {
                                ensure!(
                                    entry_type == plaintext_type,
                                    "Record '{record_name}' entry type mismatch: expected '{entry_type}', found '{plaintext_type}'"
                                )
                            }
                        },
                        // Ensure the input type cannot be a record (this is unsupported behavior).
                        RegisterType::Record(record_name) => bail!(
                            "Record '{record_name}' entry type mismatch: expected '{entry_type}', found record '{record_name}'"
                        ),
                        // Ensure the input type cannot be an external record (this is unsupported behavior).
                        RegisterType::ExternalRecord(locator) => bail!(
                            "Record '{record_name}' entry type mismatch: expected '{entry_type}', found external record '{locator}'"
                        ),
                        // Ensure the input type cannot be a future (this is unsupported behavior).
                        RegisterType::Future(..) => {
                            bail!("Record '{record_name}' entry type mismatch: expected '{entry_type}', found future",)
                        }
                    }
                }
            }
            CastType::ExternalRecord(_locator) => {
                bail!("Illegal operation: Cannot cast to an external record.")
            }
        }

        Ok(vec![match &self.cast_type {
            CastType::GroupXCoordinate => RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Field)),
            CastType::GroupYCoordinate => RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Field)),
            CastType::Plaintext(plaintext_type) => RegisterType::Plaintext(plaintext_type.clone()),
            CastType::Record(identifier) => RegisterType::Record(*identifier),
            CastType::ExternalRecord(locator) => RegisterType::ExternalRecord(*locator),
        }])
    }
}

impl<N: Network, const VARIANT: u8> CastOperation<N, VARIANT> {
    /// A helper method to handle casting to a struct.
    fn cast_to_struct(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut impl RegistersStore<N>,
        struct_name: Identifier<N>,
        inputs: Vec<Value<N>>,
    ) -> Result<()> {
        // Ensure the operands length is at least the minimum.
        if inputs.len() < N::MIN_STRUCT_ENTRIES {
            bail!("Casting to a struct requires at least {} operand", N::MIN_STRUCT_ENTRIES)
        }

        // Retrieve the struct and ensure it is defined in the program.
        let struct_ = stack.program().get_struct(&struct_name)?;

        // Ensure that the number of operands is equal to the number of struct members.
        if inputs.len() != struct_.members().len() {
            bail!(
                "Casting to the struct {} requires {} operands, but {} were provided",
                struct_.name(),
                struct_.members().len(),
                inputs.len()
            )
        }

        // Initialize the struct members.
        let mut members = IndexMap::new();
        for (member, (member_name, member_type)) in inputs.iter().zip_eq(struct_.members()) {
            // Retrieve the plaintext value from the entry.
            let plaintext = match member {
                Value::Plaintext(plaintext) => {
                    // Ensure the plaintext matches the member type.
                    stack.matches_plaintext(plaintext, member_type)?;
                    // Output the plaintext.
                    plaintext.clone()
                }
                // Ensure the struct member is not a record.
                Value::Record(..) => bail!("Casting a record into a struct member is illegal"),
                // Ensure the struct member is not a future.
                Value::Future(..) => bail!("Casting a future into a struct member is illegal"),
            };
            // Append the member to the struct members.
            members.insert(*member_name, plaintext);
        }

        // Construct the struct.
        let struct_ = Plaintext::Struct(members, Default::default());
        // Store the struct.
        registers.store(stack, &self.destination, Value::Plaintext(struct_))
    }

    /// A helper method to handle casting to an array.
    fn cast_to_array(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut impl RegistersStore<N>,
        array_type: &ArrayType<N>,
        inputs: Vec<Value<N>>,
    ) -> Result<()> {
        // Ensure that there is at least one operand.
        if inputs.len() < N::MIN_ARRAY_ELEMENTS {
            bail!("Casting to an array requires at least {} operand", N::MIN_ARRAY_ELEMENTS)
        }

        // Ensure that the number of operands is equal to the number of array entries.
        if inputs.len() != **array_type.length() as usize {
            bail!(
                "Casting to the array {} requires {} operands, but {} were provided",
                array_type,
                array_type.length(),
                inputs.len()
            )
        }

        // Initialize the elements.
        let mut elements = Vec::with_capacity(inputs.len());
        for element in inputs.iter() {
            // Retrieve the plaintext value from the element.
            let plaintext = match element {
                Value::Plaintext(plaintext) => {
                    // Ensure the plaintext matches the element type.
                    stack.matches_plaintext(plaintext, array_type.next_element_type())?;
                    // Output the plaintext.
                    plaintext.clone()
                }
                // Ensure the element is not a record.
                Value::Record(..) => bail!("Casting a record into an array element is illegal"),
                // Ensure the element is not a future.
                Value::Future(..) => bail!("Casting a future into an array element is illegal"),
            };
            // Store the element.
            elements.push(plaintext);
        }

        // Construct the array.
        let array = Plaintext::Array(elements, Default::default());
        // Store the array.
        registers.store(stack, &self.destination, Value::Plaintext(array))
    }
}

impl<N: Network, const VARIANT: u8> Parser for CastOperation<N, VARIANT> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        /// Parses an operand from the string.
        fn parse_operand<N: Network>(string: &str) -> ParserResult<Operand<N>> {
            // Parse the whitespace from the string.
            let (string, _) = Sanitizer::parse_whitespaces(string)?;
            // Parse the operand from the string.
            Operand::parse(string)
        }

        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the operands from the string.
        let (string, operands) = many1(parse_operand)(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "into" from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "as" from the string.
        let (string, _) = tag("as")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the cast type from the string.
        let (string, cast_type) = CastType::parse(string)?;
        // Check that the number of operands does not exceed the maximum number of data entries.
        let max_operands = match cast_type {
            CastType::GroupXCoordinate
            | CastType::GroupYCoordinate
            | CastType::Plaintext(PlaintextType::Literal(_)) => 1,
            CastType::Plaintext(PlaintextType::Struct(_)) => N::MAX_STRUCT_ENTRIES,
            CastType::Plaintext(PlaintextType::Array(_)) => N::MAX_ARRAY_ELEMENTS,
            CastType::Record(_) | CastType::ExternalRecord(_) => N::MAX_RECORD_ENTRIES,
        };
        match !operands.is_empty() && (operands.len() <= max_operands) {
            true => Ok((string, Self { operands, destination, cast_type })),
            false => {
                map_res(fail, |_: ParserResult<Self>| Err(error("Failed to parse 'cast' opcode: too many operands")))(
                    string,
                )
            }
        }
    }
}

impl<N: Network, const VARIANT: u8> FromStr for CastOperation<N, VARIANT> {
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Debug for CastOperation<N, VARIANT> {
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network, const VARIANT: u8> Display for CastOperation<N, VARIANT> {
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is within the bounds.
        let max_operands = match self.cast_type {
            CastType::GroupYCoordinate
            | CastType::GroupXCoordinate
            | CastType::Plaintext(PlaintextType::Literal(_)) => 1,
            CastType::Plaintext(PlaintextType::Struct(_)) => N::MAX_STRUCT_ENTRIES,
            CastType::Plaintext(PlaintextType::Array(_)) => N::MAX_ARRAY_ELEMENTS,
            CastType::Record(_) | CastType::ExternalRecord(_) => N::MAX_RECORD_ENTRIES,
        };
        if self.operands.is_empty() || self.operands.len() > max_operands {
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} ", Self::opcode())?;
        self.operands.iter().try_for_each(|operand| write!(f, "{operand} "))?;
        write!(f, "into {} as {}", self.destination, self.cast_type)
    }
}

impl<N: Network, const VARIANT: u8> FromBytes for CastOperation<N, VARIANT> {
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Read the number of operands.
        let num_operands = u8::read_le(&mut reader)? as usize;

        // Ensure that the number of operands does not exceed the upper bound.
        // Note: Although a similar check is performed later, this check is performed to ensure that an exceedingly large number of operands is not allocated.
        // Note: This check is purely a sanity check, as it is not type-aware.
        if num_operands.is_zero() || num_operands > N::MAX_RECORD_ENTRIES {
            return Err(error(format!("The number of operands must be nonzero and <= {}", N::MAX_RECORD_ENTRIES)));
        }

        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(num_operands);
        // Read the operands.
        for _ in 0..num_operands {
            operands.push(Operand::read_le(&mut reader)?);
        }

        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;

        // Read the cast type.
        let cast_type = CastType::read_le(&mut reader)?;

        // Ensure the number of operands is within the bounds for the cast type.
        let max_operands = match cast_type {
            CastType::GroupYCoordinate
            | CastType::GroupXCoordinate
            | CastType::Plaintext(PlaintextType::Literal(_)) => 1,
            CastType::Plaintext(PlaintextType::Struct(_)) => N::MAX_STRUCT_ENTRIES,
            CastType::Plaintext(PlaintextType::Array(_)) => N::MAX_ARRAY_ELEMENTS,
            CastType::Record(_) | CastType::ExternalRecord(_) => N::MAX_RECORD_ENTRIES,
        };
        if num_operands.is_zero() || num_operands > max_operands {
            return Err(error(format!("The number of operands must be nonzero and <= {max_operands}")));
        }

        // Return the operation.
        Ok(Self { operands, destination, cast_type })
    }
}

impl<N: Network, const VARIANT: u8> ToBytes for CastOperation<N, VARIANT> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is within the bounds.
        let max_operands = match self.cast_type {
            CastType::GroupYCoordinate
            | CastType::GroupXCoordinate
            | CastType::Plaintext(PlaintextType::Literal(_)) => 1,
            CastType::Plaintext(PlaintextType::Struct(_)) => N::MAX_STRUCT_ENTRIES,
            CastType::Plaintext(PlaintextType::Array(_)) => N::MAX_ARRAY_ELEMENTS,
            CastType::Record(_) | CastType::ExternalRecord(_) => N::MAX_RECORD_ENTRIES,
        };
        if self.operands.is_empty() || self.operands.len() > max_operands {
            return Err(error(format!("The number of operands must be nonzero and <= {max_operands}")));
        }

        // Write the number of operands.
        u8::try_from(self.operands.len()).map_err(|e| error(e.to_string()))?.write_le(&mut writer)?;
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)?;
        // Write the cast type.
        self.cast_type.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use console::{
        network::MainnetV0,
        program::{Access, Identifier},
    };

    type CurrentNetwork = MainnetV0;

    #[test]
    fn test_parse() {
        let (string, cast) =
            Cast::<CurrentNetwork>::parse("cast r0.owner r0.token_amount into r1 as token.record").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(cast.operands.len(), 2, "The number of operands is incorrect");
        assert_eq!(
            cast.operands[0],
            Operand::Register(Register::Access(0, vec![Access::from(Identifier::from_str("owner").unwrap())])),
            "The first operand is incorrect"
        );
        assert_eq!(
            cast.operands[1],
            Operand::Register(Register::Access(0, vec![Access::from(Identifier::from_str("token_amount").unwrap())])),
            "The second operand is incorrect"
        );
        assert_eq!(cast.destination, Register::Locator(1), "The destination register is incorrect");
        assert_eq!(
            cast.cast_type,
            CastType::Record(Identifier::from_str("token").unwrap()),
            "The value type is incorrect"
        );
    }

    #[test]
    fn test_parse_cast_into_plaintext_max_operands() {
        let mut string = "cast ".to_string();
        let mut operands = Vec::with_capacity(CurrentNetwork::MAX_STRUCT_ENTRIES);
        for i in 0..CurrentNetwork::MAX_STRUCT_ENTRIES {
            string.push_str(&format!("r{i} "));
            operands.push(Operand::Register(Register::Locator(i as u64)));
        }
        string.push_str(&format!("into r{} as foo", CurrentNetwork::MAX_STRUCT_ENTRIES));
        let (string, cast) = Cast::<CurrentNetwork>::parse(&string).unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(cast.operands.len(), CurrentNetwork::MAX_STRUCT_ENTRIES, "The number of operands is incorrect");
        assert_eq!(cast.operands, operands, "The operands are incorrect");
        assert_eq!(
            cast.destination,
            Register::Locator(CurrentNetwork::MAX_STRUCT_ENTRIES as u64),
            "The destination register is incorrect"
        );
        assert_eq!(
            cast.cast_type,
            CastType::Plaintext(PlaintextType::Struct(Identifier::from_str("foo").unwrap())),
            "The value type is incorrect"
        );
    }

    #[test]
    fn test_parse_cast_into_record_max_operands() {
        let mut string = "cast ".to_string();
        let mut operands = Vec::with_capacity(CurrentNetwork::MAX_RECORD_ENTRIES);
        for i in 0..CurrentNetwork::MAX_RECORD_ENTRIES {
            string.push_str(&format!("r{i} "));
            operands.push(Operand::Register(Register::Locator(i as u64)));
        }
        string.push_str(&format!("into r{} as token.record", CurrentNetwork::MAX_RECORD_ENTRIES));
        let (string, cast) = Cast::<CurrentNetwork>::parse(&string).unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(cast.operands.len(), CurrentNetwork::MAX_RECORD_ENTRIES, "The number of operands is incorrect");
        assert_eq!(cast.operands, operands, "The operands are incorrect");
        assert_eq!(
            cast.destination,
            Register::Locator((CurrentNetwork::MAX_RECORD_ENTRIES) as u64),
            "The destination register is incorrect"
        );
        assert_eq!(
            cast.cast_type,
            CastType::Record(Identifier::from_str("token").unwrap()),
            "The value type is incorrect"
        );
    }

    #[test]
    fn test_parse_cast_into_record_too_many_operands() {
        let mut string = "cast ".to_string();
        for i in 0..=CurrentNetwork::MAX_RECORD_ENTRIES {
            string.push_str(&format!("r{i} "));
        }
        string.push_str(&format!("into r{} as token.record", CurrentNetwork::MAX_RECORD_ENTRIES + 1));
        assert!(Cast::<CurrentNetwork>::parse(&string).is_err(), "Parser did not error");
    }

    #[test]
    fn test_parse_cast_into_plaintext_too_many_operands() {
        let mut string = "cast ".to_string();
        for i in 0..=CurrentNetwork::MAX_STRUCT_ENTRIES {
            string.push_str(&format!("r{i} "));
        }
        string.push_str(&format!("into r{} as foo", CurrentNetwork::MAX_STRUCT_ENTRIES + 1));
        assert!(Cast::<CurrentNetwork>::parse(&string).is_err(), "Parser did not error");
    }
}