snarkvm_synthesizer_program/logic/instruction/operation/
literals.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::{
    Opcode,
    Operand,
    Operation,
    traits::{RegistersLoad, RegistersLoadCircuit, RegistersStore, RegistersStoreCircuit, StackMatches, StackProgram},
};
use console::{
    network::prelude::*,
    program::{Literal, LiteralType, PlaintextType, Register, RegisterType},
};

use core::marker::PhantomData;

/// A unary literal operation.
pub type UnaryLiteral<N, O> = Literals<N, O, 1>;
/// A binary literal operation.
pub type BinaryLiteral<N, O> = Literals<N, O, 2>;
/// A ternary literal operation.
pub type TernaryLiteral<N, O> = Literals<N, O, 3>;

#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Literals<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> {
    /// The operands.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
    /// PhantomData.
    _phantom: PhantomData<O>,
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize>
    Literals<N, O, NUM_OPERANDS>
{
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        O::OPCODE
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize>
    Literals<N, O, NUM_OPERANDS>
{
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != NUM_OPERANDS {
            bail!("Instruction '{}' expects {NUM_OPERANDS} operands, found {} operands", O::OPCODE, self.operands.len())
        }

        // Load the operands literals.
        let inputs: Vec<_> =
            self.operands.iter().map(|operand| registers.load_literal(stack, operand)).try_collect()?;
        // Compute the operands register types.
        let input_types: Vec<_> =
            inputs.iter().map(|input| RegisterType::Plaintext(PlaintextType::from(input.to_type()))).collect();

        // Prepare the inputs.
        let inputs: [Literal<N>; NUM_OPERANDS] =
            inputs.try_into().map_err(|_| anyhow!("Failed to prepare operands in evaluate"))?;

        // Evaluate the operation.
        let output = O::evaluate(&inputs)?;

        // Compute the output type.
        let output_type = RegisterType::Plaintext(PlaintextType::from(output.to_type()));

        // Retrieve the expected output type.
        let expected_types = self.output_types(stack, &input_types)?;
        // Ensure there is exactly one output.
        ensure!(expected_types.len() == 1, "Expected 1 output type, found {}", expected_types.len());
        // Ensure the output type is correct.
        ensure!(expected_types[0] == output_type, "Expected output type '{}', found {output_type}", expected_types[0]);

        // Evaluate the operation and store the output.
        registers.store_literal(stack, &self.destination, output)
    }

    /// Executes the instruction.
    #[inline]
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoadCircuit<N, A> + RegistersStoreCircuit<N, A>),
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != NUM_OPERANDS {
            bail!("Instruction '{}' expects {NUM_OPERANDS} operands, found {} operands", O::OPCODE, self.operands.len())
        }

        // Load the operands literals.
        let inputs: Vec<_> =
            self.operands.iter().map(|operand| registers.load_literal_circuit(stack, operand)).try_collect()?;
        // Compute the operands register types.
        let input_types: Vec<_> =
            inputs.iter().map(|input| RegisterType::Plaintext(PlaintextType::from(input.to_type()))).collect();

        // Compute the operation.
        let output = O::execute(&inputs.try_into().map_err(|_| anyhow!("Failed to prepare operands in evaluate"))?)?;
        // Compute the output type.
        let output_type = RegisterType::Plaintext(PlaintextType::from(output.to_type()));

        // Retrieve the expected output type.
        let expected_types = self.output_types(stack, &input_types)?;
        // Ensure there is exactly one output.
        ensure!(expected_types.len() == 1, "Expected 1 output type, found {}", expected_types.len());
        // Ensure the output type is correct.
        ensure!(expected_types[0] == output_type, "Expected output type '{}', found {output_type}", expected_types[0]);

        // Evaluate the operation and store the output.
        registers.store_literal_circuit(stack, &self.destination, output)
    }

    /// Finalizes the instruction.
    #[inline]
    pub fn finalize(
        &self,
        stack: &(impl StackMatches<N> + StackProgram<N>),
        registers: &mut (impl RegistersLoad<N> + RegistersStore<N>),
    ) -> Result<()> {
        self.evaluate(stack, registers)
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(
        &self,
        _stack: &impl StackProgram<N>,
        input_types: &[RegisterType<N>],
    ) -> Result<Vec<RegisterType<N>>> {
        // Ensure the number of input types is correct.
        if input_types.len() != NUM_OPERANDS {
            bail!("Instruction '{}' expects {NUM_OPERANDS} inputs, found {} inputs", O::OPCODE, input_types.len())
        }
        // Ensure the number of operands is correct.
        if self.operands.len() != NUM_OPERANDS {
            bail!("Instruction '{}' expects {NUM_OPERANDS} operands, found {} operands", O::OPCODE, self.operands.len())
        }

        // Convert all input types into `LiteralType`s. If any are not a `LiteralType`, return an error.
        let input_types = input_types
            .iter()
            .map(|input_type| match input_type {
                RegisterType::Plaintext(PlaintextType::Literal(literal_type)) => Ok(*literal_type),
                RegisterType::Plaintext(PlaintextType::Struct(..))
                | RegisterType::Plaintext(PlaintextType::Array(..))
                | RegisterType::Record(..)
                | RegisterType::ExternalRecord(..)
                | RegisterType::Future(..) => bail!("Expected literal type, found '{input_type}'"),
            })
            .collect::<Result<Vec<_>>>()?;

        // Compute the output type.
        let output = O::output_type(&input_types.try_into().map_err(|_| anyhow!("Failed to prepare operand types"))?)?;

        // Return the output type.
        Ok(vec![RegisterType::Plaintext(PlaintextType::Literal(output))])
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> Parser
    for Literals<N, O, NUM_OPERANDS>
{
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the opcode from the string.
        let (string, _) = tag(*O::OPCODE)(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;

        // Ensure the number of operands is within the bounds.
        if NUM_OPERANDS > N::MAX_OPERANDS {
            return map_res(fail, |_: ParserResult<Self>| {
                Err(format!("The number of operands must be <= {}", N::MAX_OPERANDS))
            })(string);
        }

        // Initialize a vector to store the operands.
        let mut operands = Vec::with_capacity(NUM_OPERANDS);
        // Initialize a tracker for the string.
        let mut string_tracker = string;
        // Parse the operands from the string.
        for _ in 0..NUM_OPERANDS {
            // Parse the operand from the string.
            let (string, operand) = Operand::parse(string_tracker)?;
            // Parse the whitespace from the string.
            let (string, _) = Sanitizer::parse_whitespaces(string)?;
            // Add the operand to the vector.
            operands.push(operand);
            // Update the string tracker.
            string_tracker = string;
        }
        // Set the string to the tracker.
        let string = string_tracker;

        // Parse the "into " from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;

        Ok((string, Self { operands, destination, _phantom: PhantomData }))
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> FromStr
    for Literals<N, O, NUM_OPERANDS>
{
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> Debug
    for Literals<N, O, NUM_OPERANDS>
{
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> Display
    for Literals<N, O, NUM_OPERANDS>
{
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is within the bounds.
        if NUM_OPERANDS > N::MAX_OPERANDS {
            return Err(fmt::Error);
        }
        // Ensure the number of operands is correct.
        if self.operands.len() > NUM_OPERANDS {
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} ", O::OPCODE)?;
        self.operands.iter().try_for_each(|operand| write!(f, "{operand} "))?;
        write!(f, "into {}", self.destination)
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> FromBytes
    for Literals<N, O, NUM_OPERANDS>
{
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Ensure the number of operands is within the bounds.
        if NUM_OPERANDS > N::MAX_OPERANDS {
            return Err(error(format!("The number of operands must be <= {}", N::MAX_OPERANDS)));
        }

        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(NUM_OPERANDS);
        // Read the operands.
        for _ in 0..NUM_OPERANDS {
            operands.push(Operand::read_le(&mut reader)?);
        }

        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;
        // Return the operation.
        Ok(Self { operands, destination, _phantom: PhantomData })
    }
}

impl<N: Network, O: Operation<N, Literal<N>, LiteralType, NUM_OPERANDS>, const NUM_OPERANDS: usize> ToBytes
    for Literals<N, O, NUM_OPERANDS>
{
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is within the bounds.
        if NUM_OPERANDS > N::MAX_OPERANDS {
            return Err(error(format!("The number of operands must be <= {}", N::MAX_OPERANDS)));
        }
        // Ensure the number of operands is correct.
        if self.operands.len() > NUM_OPERANDS {
            return Err(error(format!("The number of operands must be {NUM_OPERANDS}")));
        }
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}