snarkvm_synthesizer/vm/
finalize.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

use ledger_committee::{MAX_DELEGATORS, MIN_DELEGATOR_STAKE, MIN_VALIDATOR_SELF_STAKE};
use utilities::cfg_sort_by_cached_key;

impl<N: Network, C: ConsensusStorage<N>> VM<N, C> {
    /// Speculates on the given list of transactions in the VM.
    /// This function aborts all transactions that are not are well-formed or unique.
    ///
    ///
    /// Returns the confirmed transactions, aborted transaction IDs,
    /// and finalize operations from pre-ratify and post-ratify.
    ///
    /// Note: This method is used to create a new block (including the genesis block).
    ///   - If `coinbase_reward = None`, then the `ratifications` will not be modified.
    ///   - If `coinbase_reward = Some(coinbase_reward)`, then the method will append a
    ///     `Ratify::BlockReward(block_reward)` and `Ratify::PuzzleReward(puzzle_reward)`
    ///     to the front of the `ratifications` list.
    #[inline]
    #[allow(clippy::too_many_arguments)]
    pub fn speculate<'a, R: Rng + CryptoRng>(
        &self,
        state: FinalizeGlobalState,
        time_since_last_block: i64, // TODO (raychu86): Consider moving this value into `FinalizeGlobalState`.
        coinbase_reward: Option<u64>,
        candidate_ratifications: Vec<Ratify<N>>,
        candidate_solutions: &Solutions<N>,
        candidate_transactions: impl ExactSizeIterator<Item = &'a Transaction<N>>,
        rng: &mut R,
    ) -> Result<(Ratifications<N>, Transactions<N>, Vec<N::TransactionID>, Vec<FinalizeOperation<N>>)> {
        let timer = timer!("VM::speculate");

        // Collect the candidate transactions into a vector.
        let candidate_transactions: Vec<_> = candidate_transactions.collect::<Vec<_>>();
        let candidate_transaction_ids: Vec<_> = candidate_transactions.iter().map(|tx| tx.id()).collect();

        // Determine if the vm is currently processing the genesis block.
        let is_genesis =
            self.block_store().find_block_height_from_state_root(self.block_store().current_state_root())?.is_none();
        // If the transactions are not part of the genesis block, ensure each transaction is well-formed and unique. Abort any transactions that are not.
        let (verified_transactions, verification_aborted_transactions) = match is_genesis {
            // If the current state root does not exist in the block store, then the genesis block has not been introduced yet.
            true => (candidate_transactions, vec![]),
            // Verify transactions for all non-genesis cases.
            false => self.prepare_for_speculate(&candidate_transactions, rng)?,
        };

        // Performs a **dry-run** over the list of ratifications, solutions, and transactions.
        let (ratifications, confirmed_transactions, speculation_aborted_transactions, ratified_finalize_operations) =
            self.atomic_speculate(
                state,
                time_since_last_block,
                coinbase_reward,
                candidate_ratifications,
                candidate_solutions,
                verified_transactions.into_iter(),
            )?;

        // Get the aborted transaction ids.
        let verification_aborted_transaction_ids = verification_aborted_transactions.iter().map(|(tx, e)| (tx.id(), e));
        let speculation_aborted_transaction_ids = speculation_aborted_transactions.iter().map(|(tx, e)| (tx.id(), e));
        let unordered_aborted_transaction_ids: IndexMap<N::TransactionID, &String> =
            verification_aborted_transaction_ids.chain(speculation_aborted_transaction_ids).collect();

        // Filter and order the aborted transaction ids according to candidate_transactions
        let aborted_transaction_ids: Vec<_> = candidate_transaction_ids
            .into_iter()
            .filter_map(|tx_id| {
                unordered_aborted_transaction_ids.get(&tx_id).map(|error| {
                    warn!("Speculation safely aborted a transaction - {error} ({tx_id})");
                    tx_id
                })
            })
            .collect();

        finish!(timer, "Finished dry-run of the transactions");

        // Return the ratifications, confirmed transactions, aborted transaction IDs, and ratified finalize operations.
        Ok((
            ratifications,
            confirmed_transactions.into_iter().collect(),
            aborted_transaction_ids,
            ratified_finalize_operations,
        ))
    }

    /// Checks the speculation on the given transactions in the VM.
    /// This function also ensure that the given transactions are well-formed and unique.
    ///
    /// Returns the finalize operations from pre-ratify and post-ratify.
    #[inline]
    pub fn check_speculate<R: Rng + CryptoRng>(
        &self,
        state: FinalizeGlobalState,
        time_since_last_block: i64,
        ratifications: &Ratifications<N>,
        solutions: &Solutions<N>,
        transactions: &Transactions<N>,
        rng: &mut R,
    ) -> Result<Vec<FinalizeOperation<N>>> {
        let timer = timer!("VM::check_speculate");

        // Retrieve the transactions and their rejected IDs.
        let transactions_and_rejected_ids = cfg_iter!(transactions)
            .map(|transaction| transaction.to_rejected_id().map(|rejected_id| (transaction.deref(), rejected_id)))
            .collect::<Result<Vec<_>>>()?;
        // Ensure each transaction is well-formed and unique.
        // NOTE: We perform the transaction checks here prior to `atomic_speculate` because we must
        // ensure that the `Fee` transactions are valid. We can't unify the transaction checks in `atomic_speculate`
        // because we run speculation on the unconfirmed variant of the transactions.
        self.check_transactions(&transactions_and_rejected_ids, rng)?;

        // Reconstruct the candidate ratifications to verify the speculation.
        let candidate_ratifications = ratifications.iter().cloned().collect::<Vec<_>>();
        // Reconstruct the unconfirmed transactions to verify the speculation.
        let candidate_transactions =
            transactions.iter().map(|confirmed| confirmed.to_unconfirmed_transaction()).collect::<Result<Vec<_>>>()?;

        // Performs a **dry-run** over the list of ratifications, solutions, and transactions.
        let (speculate_ratifications, confirmed_transactions, aborted_transactions, ratified_finalize_operations) =
            self.atomic_speculate(
                state,
                time_since_last_block,
                None,
                candidate_ratifications,
                solutions,
                candidate_transactions.iter(),
            )?;

        // Ensure the ratifications after speculation match.
        if ratifications != &speculate_ratifications {
            bail!("The ratifications after speculation do not match the ratifications in the block");
        }
        // Ensure the transactions after speculation match.
        if transactions != &confirmed_transactions.into_iter().collect() {
            bail!("The transactions after speculation do not match the transactions in the block");
        }
        // Ensure there are no aborted transaction IDs from this speculation.
        // Note: There should be no aborted transactions, because we are checking a block,
        // where any aborted transactions should be in the aborted transaction ID list, not in transactions.
        ensure!(aborted_transactions.is_empty(), "Aborted transactions found in the block (from speculation)");

        finish!(timer, "Finished dry-run of the transactions");

        // Return the ratified finalize operations.
        Ok(ratified_finalize_operations)
    }

    /// Finalizes the given transactions into the VM.
    ///
    /// Returns the finalize operations from pre-ratify and post-ratify.
    #[inline]
    pub fn finalize(
        &self,
        state: FinalizeGlobalState,
        ratifications: &Ratifications<N>,
        solutions: &Solutions<N>,
        transactions: &Transactions<N>,
    ) -> Result<Vec<FinalizeOperation<N>>> {
        let timer = timer!("VM::finalize");

        // Performs a **real-run** of finalize over the list of ratifications, solutions, and transactions.
        let ratified_finalize_operations = self.atomic_finalize(state, ratifications, solutions, transactions)?;

        finish!(timer, "Finished real-run of finalize");
        Ok(ratified_finalize_operations)
    }
}

impl<N: Network, C: ConsensusStorage<N>> VM<N, C> {
    /// The maximum number of confirmed transactions allowed in a block.
    #[cfg(not(any(test, feature = "test")))]
    pub const MAXIMUM_CONFIRMED_TRANSACTIONS: usize = Transactions::<N>::MAX_TRANSACTIONS;
    /// The maximum number of confirmed transactions allowed in a block.
    /// This is deliberately set to a low value (8) for testing purposes only.
    #[cfg(any(test, feature = "test"))]
    pub const MAXIMUM_CONFIRMED_TRANSACTIONS: usize = 8;

    /// Performs atomic speculation over a list of transactions.
    ///
    /// Returns the ratifications, confirmed transactions, aborted transactions,
    /// and finalize operations from pre-ratify and post-ratify.
    ///
    /// Note: This method is used by `VM::speculate` and `VM::check_speculate`.
    ///   - If `coinbase_reward = None`, then the `ratifications` will not be modified.
    ///   - If `coinbase_reward = Some(coinbase_reward)`, then the method will append a
    ///     `Ratify::BlockReward(block_reward)` and `Ratify::PuzzleReward(puzzle_reward)`
    ///     to the front of the `ratifications` list.
    fn atomic_speculate<'a>(
        &self,
        state: FinalizeGlobalState,
        time_since_last_block: i64,
        coinbase_reward: Option<u64>,
        ratifications: Vec<Ratify<N>>,
        solutions: &Solutions<N>,
        transactions: impl ExactSizeIterator<Item = &'a Transaction<N>>,
    ) -> Result<(
        Ratifications<N>,
        Vec<ConfirmedTransaction<N>>,
        Vec<(Transaction<N>, String)>,
        Vec<FinalizeOperation<N>>,
    )> {
        // Acquire the atomic lock, which is needed to ensure this function is not called concurrently
        // with other `atomic_finalize!` macro calls, which will cause a `bail!` to be triggered erroneously.
        // Note: This lock must be held for the entire scope of the call to `atomic_finalize!`.
        let _atomic_lock = self.atomic_lock.lock();

        let timer = timer!("VM::atomic_speculate");

        // Retrieve the number of solutions.
        let num_solutions = solutions.len();
        // Retrieve the number of transactions.
        let num_transactions = transactions.len();

        // Perform the finalize operation on the preset finalize mode.
        atomic_finalize!(self.finalize_store(), FinalizeMode::DryRun, {
            // Ensure the number of solutions does not exceed the maximum.
            if num_solutions > Solutions::<N>::MAX_ABORTED_SOLUTIONS {
                // Note: This will abort the entire atomic batch.
                return Err(format!(
                    "Too many solutions in the block - {num_solutions} (max: {})",
                    Solutions::<N>::MAX_ABORTED_SOLUTIONS
                ));
            }

            // Ensure the number of transactions does not exceed the maximum.
            if num_transactions > Transactions::<N>::MAX_ABORTED_TRANSACTIONS {
                // Note: This will abort the entire atomic batch.
                return Err(format!(
                    "Too many transactions in the block - {num_transactions} (max: {})",
                    Transactions::<N>::MAX_ABORTED_TRANSACTIONS
                ));
            }

            // Initialize an iterator for ratifications before finalize.
            let pre_ratifications = ratifications.iter().filter(|r| match r {
                Ratify::Genesis(_, _, _) => true,
                Ratify::BlockReward(..) | Ratify::PuzzleReward(..) => false,
            });
            // Initialize an iterator for ratifications after finalize.
            let post_ratifications = ratifications.iter().filter(|r| match r {
                Ratify::Genesis(_, _, _) => false,
                Ratify::BlockReward(..) | Ratify::PuzzleReward(..) => true,
            });

            // Initialize a list of finalize operations.
            let mut ratified_finalize_operations = Vec::new();

            // Retrieve the finalize store.
            let store = self.finalize_store();

            /* Perform the ratifications before finalize. */

            match Self::atomic_pre_ratify(store, state, pre_ratifications) {
                // Store the finalize operations from the post-ratify.
                Ok(operations) => ratified_finalize_operations.extend(operations),
                // Note: This will abort the entire atomic batch.
                Err(e) => return Err(format!("Failed to pre-ratify - {e}")),
            }

            /* Perform the atomic finalize over the transactions. */

            // Acquire the write lock on the process.
            // Note: Due to the highly-sensitive nature of processing all `finalize` calls,
            // we choose to acquire the write lock for the entire duration of this atomic batch.
            let process = self.process.write();

            // Initialize a list of the confirmed transactions.
            let mut confirmed = Vec::with_capacity(num_transactions);
            // Initialize a list of the aborted transactions.
            let mut aborted = Vec::new();
            // Initialize a list of the successful deployments.
            let mut deployments = IndexSet::new();
            // Initialize a counter for the confirmed transaction index.
            let mut counter = 0u32;
            // Initialize a list of created transition IDs.
            let mut transition_ids: IndexSet<N::TransitionID> = IndexSet::new();
            // Initialize a list of spent input IDs.
            let mut input_ids: IndexSet<Field<N>> = IndexSet::new();
            // Initialize a list of created output IDs.
            let mut output_ids: IndexSet<Field<N>> = IndexSet::new();
            // Initialize the list of created transition public keys.
            let mut tpks: IndexSet<Group<N>> = IndexSet::new();
            // Initialize the list of deployment payers.
            let mut deployment_payers: IndexSet<Address<N>> = IndexSet::new();

            // Finalize the transactions.
            'outer: for transaction in transactions {
                // Ensure the number of confirmed transactions does not exceed the maximum.
                // Upon reaching the maximum number of confirmed transactions, all remaining transactions are aborted.
                if confirmed.len() >= Self::MAXIMUM_CONFIRMED_TRANSACTIONS {
                    // Store the aborted transaction.
                    aborted.push((transaction.clone(), "Exceeds block transaction limit".to_string()));
                    // Continue to the next transaction.
                    continue 'outer;
                }

                // Determine if the transaction should be aborted.
                if let Some(reason) = self.should_abort_transaction(
                    transaction,
                    &transition_ids,
                    &input_ids,
                    &output_ids,
                    &tpks,
                    &deployment_payers,
                ) {
                    // Store the aborted transaction.
                    aborted.push((transaction.clone(), reason));
                    // Continue to the next transaction.
                    continue 'outer;
                }

                // Process the transaction in an isolated atomic batch.
                // - If the transaction succeeds, the finalize operations are stored.
                // - If the transaction fails, the atomic batch is aborted and no finalize operations are stored.
                let outcome = match transaction {
                    // The finalize operation here involves appending the 'stack',
                    // and adding the program to the finalize tree.
                    Transaction::Deploy(_, program_owner, deployment, fee) => {
                        // Define the closure for processing a rejected deployment.
                        let process_rejected_deployment =
                            |fee: &Fee<N>,
                             deployment: Deployment<N>|
                             -> Result<Result<ConfirmedTransaction<N>, String>> {
                                process
                                    .finalize_fee(state, store, fee)
                                    .and_then(|finalize| {
                                        Transaction::from_fee(fee.clone()).map(|fee_tx| (fee_tx, finalize))
                                    })
                                    .map(|(fee_tx, finalize)| {
                                        let rejected = Rejected::new_deployment(*program_owner, deployment);
                                        ConfirmedTransaction::rejected_deploy(counter, fee_tx, rejected, finalize)
                                            .map_err(|e| e.to_string())
                                    })
                            };

                        // Check if the program has already been deployed in this block.
                        match deployments.contains(deployment.program_id()) {
                            // If the program has already been deployed, construct the rejected deploy transaction.
                            true => match process_rejected_deployment(fee, *deployment.clone()) {
                                Ok(result) => result,
                                Err(error) => {
                                    // Note: On failure, skip this transaction, and continue speculation.
                                    #[cfg(debug_assertions)]
                                    eprintln!("Failed to finalize the fee in a rejected deploy - {error}");
                                    // Store the aborted transaction.
                                    aborted.push((transaction.clone(), error.to_string()));
                                    // Continue to the next transaction.
                                    continue 'outer;
                                }
                            },
                            // If the program has not yet been deployed, attempt to deploy it.
                            false => match process.finalize_deployment(state, store, deployment, fee) {
                                // Construct the accepted deploy transaction.
                                Ok((_, finalize)) => {
                                    // Add the program id to the list of deployments.
                                    deployments.insert(*deployment.program_id());
                                    ConfirmedTransaction::accepted_deploy(counter, transaction.clone(), finalize)
                                        .map_err(|e| e.to_string())
                                }
                                // Construct the rejected deploy transaction.
                                Err(_error) => match process_rejected_deployment(fee, *deployment.clone()) {
                                    Ok(result) => result,
                                    Err(error) => {
                                        // Note: On failure, skip this transaction, and continue speculation.
                                        #[cfg(debug_assertions)]
                                        eprintln!("Failed to finalize the fee in a rejected deploy - {error}");
                                        // Store the aborted transaction.
                                        aborted.push((transaction.clone(), error.to_string()));
                                        // Continue to the next transaction.
                                        continue 'outer;
                                    }
                                },
                            },
                        }
                    }
                    // The finalize operation here involves calling 'update_key_value',
                    // and update the respective leaves of the finalize tree.
                    Transaction::Execute(_, execution, fee) => {
                        // Determine if the transaction is safe for execution, and proceed to execute it.
                        match Self::prepare_for_execution(store, execution)
                            .and_then(|_| process.finalize_execution(state, store, execution, fee.as_ref()))
                        {
                            // Construct the accepted execute transaction.
                            Ok(finalize) => {
                                ConfirmedTransaction::accepted_execute(counter, transaction.clone(), finalize)
                                    .map_err(|e| e.to_string())
                            }
                            // Construct the rejected execute transaction.
                            Err(_error) => match fee {
                                // Finalize the fee, to ensure it is valid.
                                Some(fee) => {
                                    match process.finalize_fee(state, store, fee).and_then(|finalize| {
                                        Transaction::from_fee(fee.clone()).map(|fee_tx| (fee_tx, finalize))
                                    }) {
                                        Ok((fee_tx, finalize)) => {
                                            // Construct the rejected execution.
                                            let rejected = Rejected::new_execution(execution.clone());
                                            // Construct the rejected execute transaction.
                                            ConfirmedTransaction::rejected_execute(counter, fee_tx, rejected, finalize)
                                                .map_err(|e| e.to_string())
                                        }
                                        Err(error) => {
                                            // Note: On failure, skip this transaction, and continue speculation.
                                            #[cfg(debug_assertions)]
                                            eprintln!("Failed to finalize the fee in a rejected execute - {error}");
                                            // Store the aborted transaction.
                                            aborted.push((transaction.clone(), error.to_string()));
                                            // Continue to the next transaction.
                                            continue 'outer;
                                        }
                                    }
                                }

                                // This is a foundational bug - the caller is violating protocol rules.
                                // It is possible that a `credits.aleo/split` transaction has no fee. However, it
                                // is a simple transition without finalize operations and should not fail here.
                                // Note: This will abort the entire atomic batch.
                                None => Err("Rejected execute transaction has no fee".to_string()),
                            },
                        }
                    }
                    // There are no finalize operations here.
                    // Note: This will abort the entire atomic batch.
                    Transaction::Fee(..) => Err("Cannot speculate on a fee transaction".to_string()),
                };
                lap!(timer, "Speculated on transaction '{}'", transaction.id());

                match outcome {
                    // If the transaction succeeded, store it and continue to the next transaction.
                    Ok(confirmed_transaction) => {
                        // Add the transition IDs to the set of produced transition IDs.
                        transition_ids.extend(confirmed_transaction.transaction().transition_ids());
                        // Add the input IDs to the set of spent input IDs.
                        input_ids.extend(confirmed_transaction.transaction().input_ids());
                        // Add the output IDs to the set of produced output IDs.
                        output_ids.extend(confirmed_transaction.transaction().output_ids());
                        // Add the transition public keys to the set of produced transition public keys.
                        tpks.extend(confirmed_transaction.transaction().transition_public_keys());
                        // Add any public deployment payer to the set of deployment payers.
                        if let Transaction::Deploy(_, _, _, fee) = confirmed_transaction.transaction() {
                            fee.payer().map(|payer| deployment_payers.insert(payer));
                        }
                        // Store the confirmed transaction.
                        confirmed.push(confirmed_transaction);
                        // Increment the transaction index counter.
                        counter = counter.saturating_add(1);
                    }
                    // If the transaction failed, abort the entire batch.
                    Err(error) => {
                        eprintln!("Critical bug in speculate: {error}\n\n{transaction}");
                        // Note: This will abort the entire atomic batch.
                        return Err(format!("Failed to speculate on transaction - {error}"));
                    }
                }
            }

            // Ensure all transactions were processed.
            if confirmed.len() + aborted.len() != num_transactions {
                // Note: This will abort the entire atomic batch.
                return Err("Not all transactions were processed in 'VM::atomic_speculate'".to_string());
            }

            /* Perform the ratifications after finalize. */

            // Prepare the reward ratifications, if any.
            let reward_ratifications = match coinbase_reward {
                // If the coinbase reward is `None`, then there are no reward ratifications.
                None => vec![],
                // If the coinbase reward is `Some(coinbase_reward)`, then we must compute the reward ratifications.
                Some(coinbase_reward) => {
                    // Calculate the transaction fees.
                    let Ok(transaction_fees) =
                        confirmed.iter().map(|tx| Ok(*tx.priority_fee_amount()?)).sum::<Result<u64>>()
                    else {
                        // Note: This will abort the entire atomic batch.
                        return Err("Failed to calculate the transaction fees during speculation".to_string());
                    };

                    // Compute the block reward.
                    let block_reward = ledger_block::block_reward::<N>(
                        state.block_height(),
                        N::STARTING_SUPPLY,
                        N::BLOCK_TIME,
                        time_since_last_block,
                        coinbase_reward,
                        transaction_fees,
                    );
                    // Compute the puzzle reward.
                    let puzzle_reward = ledger_block::puzzle_reward(coinbase_reward);

                    // Output the reward ratifications.
                    vec![Ratify::BlockReward(block_reward), Ratify::PuzzleReward(puzzle_reward)]
                }
            };

            // Update the post-ratifications iterator.
            let post_ratifications = reward_ratifications.iter().chain(post_ratifications);

            // Process the post-ratifications.
            match Self::atomic_post_ratify::<false>(&self.puzzle, store, state, post_ratifications, solutions) {
                // Store the finalize operations from the post-ratify.
                Ok(operations) => ratified_finalize_operations.extend(operations),
                // Note: This will abort the entire atomic batch.
                Err(e) => return Err(format!("Failed to post-ratify - {e}")),
            }

            /* Construct the ratifications after speculation. */

            let Ok(ratifications) =
                Ratifications::try_from_iter(reward_ratifications.into_iter().chain(ratifications.into_iter()))
            else {
                // Note: This will abort the entire atomic batch.
                return Err("Failed to construct the ratifications after speculation".to_string());
            };

            finish!(timer);

            // On return, 'atomic_finalize!' will abort the batch, and return the ratifications,
            // confirmed & aborted transactions, and finalize operations from pre-ratify and post-ratify.
            Ok((ratifications, confirmed, aborted, ratified_finalize_operations))
        })
    }

    /// Performs atomic finalization over a list of transactions.
    ///
    /// Returns the finalize operations from pre-ratify and post-ratify.
    #[inline]
    fn atomic_finalize(
        &self,
        state: FinalizeGlobalState,
        ratifications: &Ratifications<N>,
        solutions: &Solutions<N>,
        transactions: &Transactions<N>,
    ) -> Result<Vec<FinalizeOperation<N>>> {
        // Acquire the atomic lock, which is needed to ensure this function is not called concurrently
        // with other `atomic_finalize!` macro calls, which will cause a `bail!` to be triggered erroneously.
        // Note: This lock must be held for the entire scope of the call to `atomic_finalize!`.
        let _atomic_lock = self.atomic_lock.lock();

        let timer = timer!("VM::atomic_finalize");

        // Perform the finalize operation on the preset finalize mode.
        atomic_finalize!(self.finalize_store(), FinalizeMode::RealRun, {
            // Initialize an iterator for ratifications before finalize.
            let pre_ratifications = ratifications.iter().filter(|r| match r {
                Ratify::Genesis(_, _, _) => true,
                Ratify::BlockReward(..) | Ratify::PuzzleReward(..) => false,
            });
            // Initialize an iterator for ratifications after finalize.
            let post_ratifications = ratifications.iter().filter(|r| match r {
                Ratify::Genesis(_, _, _) => false,
                Ratify::BlockReward(..) | Ratify::PuzzleReward(..) => true,
            });

            // Initialize a list of finalize operations.
            let mut ratified_finalize_operations = Vec::new();

            // Retrieve the finalize store.
            let store = self.finalize_store();

            /* Perform the ratifications before finalize. */

            match Self::atomic_pre_ratify(store, state, pre_ratifications) {
                // Store the finalize operations from the post-ratify.
                Ok(operations) => ratified_finalize_operations.extend(operations),
                // Note: This will abort the entire atomic batch.
                Err(e) => return Err(format!("Failed to pre-ratify - {e}")),
            }

            /* Perform the atomic finalize over the transactions. */

            // Acquire the write lock on the process.
            // Note: Due to the highly-sensitive nature of processing all `finalize` calls,
            // we choose to acquire the write lock for the entire duration of this atomic batch.
            let mut process = self.process.write();

            // Initialize a list for the deployed stacks.
            let mut stacks = Vec::new();

            // Finalize the transactions.
            for (index, transaction) in transactions.iter().enumerate() {
                // Convert the transaction index to a u32.
                // Note: On failure, this will abort the entire atomic batch.
                let index = u32::try_from(index).map_err(|_| "Failed to convert transaction index".to_string())?;
                // Ensure the index matches the expected index.
                if index != transaction.index() {
                    // Note: This will abort the entire atomic batch.
                    return Err(format!("Mismatch in {} transaction index", transaction.variant()));
                }
                // Process the transaction in an isolated atomic batch.
                // - If the transaction succeeds, the finalize operations are stored.
                // - If the transaction fails, the atomic batch is aborted and no finalize operations are stored.
                let outcome: Result<(), String> = match transaction {
                    ConfirmedTransaction::AcceptedDeploy(_, transaction, finalize) => {
                        // Extract the deployment and fee from the transaction.
                        let (deployment, fee) = match transaction {
                            Transaction::Deploy(_, _, deployment, fee) => (deployment, fee),
                            // Note: This will abort the entire atomic batch.
                            _ => return Err("Expected deploy transaction".to_string()),
                        };
                        // The finalize operation here involves appending the 'stack', and adding the program to the finalize tree.
                        match process.finalize_deployment(state, store, deployment, fee) {
                            // Ensure the finalize operations match the expected.
                            Ok((stack, finalize_operations)) => match finalize == &finalize_operations {
                                // Store the stack.
                                true => stacks.push(stack),
                                // Note: This will abort the entire atomic batch.
                                false => {
                                    return Err(format!(
                                        "Mismatch in finalize operations for an accepted deploy - (found: {finalize_operations:?}, expected: {finalize:?})"
                                    ));
                                }
                            },
                            // Note: This will abort the entire atomic batch.
                            Err(error) => {
                                return Err(format!("Failed to finalize an accepted deploy transaction - {error}"));
                            }
                        };
                        Ok(())
                    }
                    ConfirmedTransaction::AcceptedExecute(_, transaction, finalize) => {
                        // Extract the execution and fee from the transaction.
                        let (execution, fee) = match transaction {
                            Transaction::Execute(_, execution, fee) => (execution, fee),
                            // Note: This will abort the entire atomic batch.
                            _ => return Err("Expected execute transaction".to_string()),
                        };
                        // The finalize operation here involves calling 'update_key_value',
                        // and update the respective leaves of the finalize tree.
                        match process.finalize_execution(state, store, execution, fee.as_ref()) {
                            // Ensure the finalize operations match the expected.
                            Ok(finalize_operations) => {
                                if finalize != &finalize_operations {
                                    // Note: This will abort the entire atomic batch.
                                    return Err(format!(
                                        "Mismatch in finalize operations for an accepted execute - (found: {finalize_operations:?}, expected: {finalize:?})"
                                    ));
                                }
                            }
                            // Note: This will abort the entire atomic batch.
                            Err(error) => {
                                return Err(format!("Failed to finalize an accepted execute transaction - {error}"));
                            }
                        }
                        Ok(())
                    }
                    ConfirmedTransaction::RejectedDeploy(_, Transaction::Fee(_, fee), rejected, finalize) => {
                        // Extract the rejected deployment.
                        let Some(deployment) = rejected.deployment() else {
                            // Note: This will abort the entire atomic batch.
                            return Err("Expected rejected deployment".to_string());
                        };
                        // Compute the expected deployment ID.
                        let Ok(expected_deployment_id) = deployment.to_deployment_id() else {
                            // Note: This will abort the entire atomic batch.
                            return Err("Failed to compute the deployment ID for a rejected deployment".to_string());
                        };
                        // Retrieve the candidate deployment ID.
                        let Ok(candidate_deployment_id) = fee.deployment_or_execution_id() else {
                            // Note: This will abort the entire atomic batch.
                            return Err("Failed to retrieve the deployment ID from the fee".to_string());
                        };
                        // Ensure this fee corresponds to the deployment.
                        if candidate_deployment_id != expected_deployment_id {
                            // Note: This will abort the entire atomic batch.
                            return Err("Mismatch in fee for a rejected deploy transaction".to_string());
                        }
                        // Lastly, finalize the fee.
                        match process.finalize_fee(state, store, fee) {
                            // Ensure the finalize operations match the expected.
                            Ok(finalize_operations) => {
                                if finalize != &finalize_operations {
                                    // Note: This will abort the entire atomic batch.
                                    return Err(format!(
                                        "Mismatch in finalize operations for a rejected deploy - (found: {finalize_operations:?}, expected: {finalize:?})"
                                    ));
                                }
                            }
                            // Note: This will abort the entire atomic batch.
                            Err(_e) => {
                                return Err("Failed to finalize the fee in a rejected deploy transaction".to_string());
                            }
                        }
                        Ok(())
                    }
                    ConfirmedTransaction::RejectedExecute(_, Transaction::Fee(_, fee), rejected, finalize) => {
                        // Extract the rejected execution.
                        let Some(execution) = rejected.execution() else {
                            // Note: This will abort the entire atomic batch.
                            return Err("Expected rejected execution".to_string());
                        };
                        // Compute the expected execution ID.
                        let Ok(expected_execution_id) = execution.to_execution_id() else {
                            // Note: This will abort the entire atomic batch.
                            return Err("Failed to compute the execution ID for a rejected execution".to_string());
                        };
                        // Retrieve the candidate execution ID.
                        let Ok(candidate_execution_id) = fee.deployment_or_execution_id() else {
                            // Note: This will abort the entire atomic batch.
                            return Err("Failed to retrieve the execution ID from the fee".to_string());
                        };
                        // Ensure this fee corresponds to the execution.
                        if candidate_execution_id != expected_execution_id {
                            // Note: This will abort the entire atomic batch.
                            return Err("Mismatch in fee for a rejected execute transaction".to_string());
                        }
                        // Lastly, finalize the fee.
                        match process.finalize_fee(state, store, fee) {
                            // Ensure the finalize operations match the expected.
                            Ok(finalize_operations) => {
                                if finalize != &finalize_operations {
                                    // Note: This will abort the entire atomic batch.
                                    return Err(format!(
                                        "Mismatch in finalize operations for a rejected execute - (found: {finalize_operations:?}, expected: {finalize:?})"
                                    ));
                                }
                            }
                            // Note: This will abort the entire atomic batch.
                            Err(_e) => {
                                return Err("Failed to finalize the fee in a rejected execute transaction".to_string());
                            }
                        }
                        Ok(())
                    }
                    // Note: This will abort the entire atomic batch.
                    _ => return Err("Invalid confirmed transaction type".to_string()),
                };
                lap!(timer, "Finalizing transaction {}", transaction.id());

                match outcome {
                    // If the transaction succeeded to finalize, continue to the next transaction.
                    Ok(()) => (),
                    // If the transaction failed to finalize, abort and continue to the next transaction.
                    Err(error) => {
                        eprintln!("Critical bug in finalize: {error}\n\n{transaction}");
                        // Note: This will abort the entire atomic batch.
                        return Err(format!("Failed to finalize on transaction - {error}"));
                    }
                }
            }

            /* Perform the ratifications after finalize. */

            match Self::atomic_post_ratify::<true>(&self.puzzle, store, state, post_ratifications, solutions) {
                // Store the finalize operations from the post-ratify.
                Ok(operations) => ratified_finalize_operations.extend(operations),
                // Note: This will abort the entire atomic batch.
                Err(e) => return Err(format!("Failed to post-ratify - {e}")),
            }

            /* Start the commit process. */

            // Commit all of the stacks to the process.
            if !stacks.is_empty() {
                stacks.into_iter().for_each(|stack| process.add_stack(stack))
            }

            finish!(timer); // <- Note: This timer does **not** include the time to write batch to DB.

            Ok(ratified_finalize_operations)
        })
    }

    /// Returns `Some(reason)` if the transaction is aborted. Otherwise, returns `None`.
    ///
    /// The transaction will be aborted if any of the following conditions are met:
    /// - The transaction is producing a duplicate transition
    /// - The transaction is double-spending an input
    /// - The transaction is producing a duplicate output
    /// - The transaction is producing a duplicate transition public key
    /// - The transaction is another deployment in the block from the same public fee payer.
    fn should_abort_transaction(
        &self,
        transaction: &Transaction<N>,
        transition_ids: &IndexSet<N::TransitionID>,
        input_ids: &IndexSet<Field<N>>,
        output_ids: &IndexSet<Field<N>>,
        tpks: &IndexSet<Group<N>>,
        deployment_payers: &IndexSet<Address<N>>,
    ) -> Option<String> {
        // Ensure that the transaction is not producing a duplicate transition.
        for transition_id in transaction.transition_ids() {
            // If the transition ID is already produced in this block or previous blocks, abort the transaction.
            if transition_ids.contains(transition_id)
                || self.transition_store().contains_transition_id(transition_id).unwrap_or(true)
            {
                return Some(format!("Duplicate transition {transition_id}"));
            }
        }

        // Ensure that the transaction is not double-spending an input.
        for input_id in transaction.input_ids() {
            // If the input ID is already spent in this block or previous blocks, abort the transaction.
            if input_ids.contains(input_id) || self.transition_store().contains_input_id(input_id).unwrap_or(true) {
                return Some(format!("Double-spending input {input_id}"));
            }
        }

        // Ensure that the transaction is not producing a duplicate output.
        for output_id in transaction.output_ids() {
            // If the output ID is already produced in this block or previous blocks, abort the transaction.
            if output_ids.contains(output_id) || self.transition_store().contains_output_id(output_id).unwrap_or(true) {
                return Some(format!("Duplicate output {output_id}"));
            }
        }

        // Ensure that the transaction is not producing a duplicate transition public key.
        // Note that the tpk and tcm are corresponding, so a uniqueness check for just the tpk is sufficient.
        for tpk in transaction.transition_public_keys() {
            // If the transition public key is already produced in this block or previous blocks, abort the transaction.
            if tpks.contains(tpk) || self.transition_store().contains_tpk(tpk).unwrap_or(true) {
                return Some(format!("Duplicate transition public key {tpk}"));
            }
        }

        // If the transaction is a deployment, ensure that it is not another deployment in the block from the same public fee payer.
        if let Transaction::Deploy(_, _, _, fee) = transaction {
            // If any public deployment payer has already deployed in this block, abort the transaction.
            if let Some(payer) = fee.payer() {
                if deployment_payers.contains(&payer) {
                    return Some(format!("Another deployment in the block from the same public fee payer {payer}"));
                }
            }
        }

        // Return `None` because the transaction is well-formed.
        None
    }

    /// Performs precondition checks on the transactions prior to speculation.
    ///
    /// This method is used to check the following conditions:
    /// - If a transaction is a fee transaction or if it is invalid,
    ///   then the transaction will be aborted.
    pub(crate) fn prepare_for_speculate<'a, R: CryptoRng + Rng>(
        &self,
        transactions: &[&'a Transaction<N>],
        rng: &mut R,
    ) -> Result<(Vec<&'a Transaction<N>>, Vec<(&'a Transaction<N>, String)>)> {
        // Construct the list of transactions that need to verified.
        let mut transactions_to_verify = Vec::with_capacity(transactions.len());
        // Construct the list of valid and invalid transactions.
        let mut valid_transactions = Vec::with_capacity(transactions.len());
        let mut aborted_transactions = Vec::with_capacity(transactions.len());

        // Initialize a list of created transition IDs.
        let mut transition_ids: IndexSet<N::TransitionID> = Default::default();
        // Initialize a list of spent input IDs.
        let mut input_ids: IndexSet<Field<N>> = Default::default();
        // Initialize a list of created output IDs.
        let mut output_ids: IndexSet<Field<N>> = Default::default();
        // Initialize the list of created transition public keys.
        let mut tpks: IndexSet<Group<N>> = Default::default();
        // Initialize the list of deployment payers.
        let mut deployment_payers: IndexSet<Address<N>> = Default::default();

        // Abort the transactions that are have duplicates or are invalid. This will prevent the VM from performing
        // verification on transactions that would have been aborted in `VM::atomic_speculate`.
        for transaction in transactions.iter() {
            // Abort the transaction early if it is a fee transaction.
            if transaction.is_fee() {
                aborted_transactions.push((*transaction, "Fee transactions are not allowed in speculate".to_string()));
                continue;
            }

            // Determine if the transaction should be aborted.
            match self.should_abort_transaction(
                transaction,
                &transition_ids,
                &input_ids,
                &output_ids,
                &tpks,
                &deployment_payers,
            ) {
                // Store the aborted transaction.
                Some(reason) => aborted_transactions.push((*transaction, reason.to_string())),
                // Track the transaction state.
                None => {
                    // Add the transition IDs to the set of produced transition IDs.
                    transition_ids.extend(transaction.transition_ids());
                    // Add the input IDs to the set of spent input IDs.
                    input_ids.extend(transaction.input_ids());
                    // Add the output IDs to the set of produced output IDs.
                    output_ids.extend(transaction.output_ids());
                    // Add the transition public keys to the set of produced transition public keys.
                    tpks.extend(transaction.transition_public_keys());
                    // Add any public deployment payer to the set of deployment payers.
                    if let Transaction::Deploy(_, _, _, fee) = transaction {
                        fee.payer().map(|payer| deployment_payers.insert(payer));
                    }

                    // Add the transaction to the list of transactions to verify.
                    transactions_to_verify.push(transaction);
                }
            };
        }

        // Separate the transactions into deploys and executions.
        let (deployments, executions): (Vec<&Transaction<N>>, Vec<&Transaction<N>>) =
            transactions_to_verify.into_iter().partition(|tx| tx.is_deploy());
        // Chunk the deploys and executions into groups for parallel verification.
        let deployments_for_verification = deployments.chunks(Self::MAX_PARALLEL_DEPLOY_VERIFICATIONS);
        let executions_for_verification = executions.chunks(Self::MAX_PARALLEL_EXECUTE_VERIFICATIONS);

        // Verify the transactions in batches and separate the valid and invalid transactions.
        for transactions in deployments_for_verification.chain(executions_for_verification) {
            let rngs = (0..transactions.len()).map(|_| StdRng::from_seed(rng.gen())).collect::<Vec<_>>();
            // Verify the transactions and collect the error message if there is one.
            let (valid, invalid): (Vec<_>, Vec<_>) =
                cfg_into_iter!(transactions).zip(rngs).partition_map(|(transaction, mut rng)| {
                    // Verify the transaction.
                    match self.check_transaction(transaction, None, &mut rng) {
                        // If the transaction is valid, add it to the list of valid transactions.
                        Ok(_) => Either::Left(*transaction),
                        // If the transaction is invalid, add it to the list of aborted transactions.
                        Err(e) => Either::Right((*transaction, e.to_string())),
                    }
                });

            // Collect the valid and aborted transactions.
            valid_transactions.extend(valid);
            aborted_transactions.extend(invalid);
        }

        // Sort the valid and aborted transactions based on their position in the original list.
        let position: IndexSet<_> = transactions.iter().map(|tx| tx.id()).collect();
        cfg_sort_by_cached_key!(valid_transactions, |tx| position.get_index_of(&tx.id()));
        cfg_sort_by_cached_key!(aborted_transactions, |tx| position.get_index_of(&tx.0.id()));

        // Return the valid and invalid transactions.
        Ok((valid_transactions, aborted_transactions))
    }

    /// Performs precondition checks on the transaction prior to execution.
    ///
    /// This method is used to check the following conditions:
    /// - If the transaction contains a `credits.aleo/bond_public` transition,
    ///   then the outcome should not exceed the maximum committee size.
    #[inline]
    fn prepare_for_execution(store: &FinalizeStore<N, C::FinalizeStorage>, execution: &Execution<N>) -> Result<()> {
        // Construct the program ID.
        let program_id = ProgramID::from_str("credits.aleo")?;
        // Construct the committee mapping name.
        let committee_mapping = Identifier::from_str("committee")?;

        // Check if the execution has any `bond_validator` transitions, and collect
        // the unique validator addresses if so.
        // Note: This does not dedup for existing and new validator addresses.
        let bond_validator_addresses: HashSet<_> = execution
            .transitions()
            .filter_map(|transition| match transition.is_bond_validator() {
                // Get the first argument of the transition output if it is a `Future` with a `Plaintext` argument.
                true => match transition.outputs().first() {
                    Some(Output::Future(_, Some(future))) => future.arguments().first().and_then(|arg| match arg {
                        Argument::Plaintext(Plaintext::Literal(Literal::Address(address), _)) => Some(*address),
                        _ => None,
                    }),
                    _ => None,
                },
                false => None,
            })
            .collect();

        // Check if we need to reject the execution if the number of new validators exceeds the maximum committee size.
        match bond_validator_addresses.is_empty() {
            false => {
                // Retrieve the committee members from storage.
                let committee_members = store
                    .get_mapping_speculative(program_id, committee_mapping)?
                    .into_iter()
                    .map(|(key, _)| match key {
                        // Extract the address from the key.
                        Plaintext::Literal(Literal::Address(address), _) => Ok(address),
                        _ => Err(anyhow!("Invalid committee key (missing address) - {key}")),
                    })
                    .collect::<Result<HashSet<_>>>()?;
                // Get the number of new validators being bonded to.
                let num_new_validators =
                    bond_validator_addresses.into_iter().filter(|address| !committee_members.contains(address)).count();
                // Compute the next committee size.
                let next_committee_size = committee_members.len().saturating_add(num_new_validators);
                // Check that the number of new validators being bonded does not exceed the maximum number of validators.
                match next_committee_size > Committee::<N>::MAX_COMMITTEE_SIZE as usize {
                    true => Err(anyhow!("Call to 'credits.aleo/bond_public' exceeds the committee size")),
                    false => Ok(()),
                }
            }
            true => Ok(()),
        }
    }

    /// Performs the pre-ratifications before finalizing transactions.
    #[inline]
    fn atomic_pre_ratify<'a>(
        store: &FinalizeStore<N, C::FinalizeStorage>,
        state: FinalizeGlobalState,
        pre_ratifications: impl Iterator<Item = &'a Ratify<N>>,
    ) -> Result<Vec<FinalizeOperation<N>>> {
        // Construct the program ID.
        let program_id = ProgramID::from_str("credits.aleo")?;
        // Construct the committee mapping name.
        let committee_mapping = Identifier::from_str("committee")?;
        // Construct the delegated mapping name.
        let delegated_mapping: Identifier<N> = Identifier::from_str("delegated")?;
        // Construct the bonded mapping name.
        let bonded_mapping = Identifier::from_str("bonded")?;
        // Construct the account mapping name.
        let account_mapping = Identifier::from_str("account")?;
        // Construct the metadata mapping name.
        let metadata_mapping = Identifier::from_str("metadata")?;
        // Construct the withdraw mapping name.
        let withdraw_mapping = Identifier::from_str("withdraw")?;

        // Initialize a list of finalize operations.
        let mut finalize_operations = Vec::new();

        // Initialize a flag for the genesis ratification.
        let mut is_genesis_ratified = false;

        // Iterate over the ratifications.
        for ratify in pre_ratifications {
            match ratify {
                Ratify::Genesis(committee, public_balances, bonded_balances) => {
                    // Ensure this is the genesis block.
                    ensure!(state.block_height() == 0, "Ratify::Genesis(..) expected a genesis block");
                    // Ensure the genesis committee round is 0.
                    ensure!(
                        committee.starting_round() == 0,
                        "Ratify::Genesis(..) expected a genesis committee round of 0"
                    );
                    // Ensure that the number of members in the committee does not exceed the maximum.
                    ensure!(
                        committee.members().len() <= Committee::<N>::MAX_COMMITTEE_SIZE as usize,
                        "Ratify::Genesis(..) exceeds the maximum number of committee members"
                    );
                    // Ensure that the number of delegators does not exceed the maximum.
                    ensure!(
                        bonded_balances.len().saturating_sub(committee.members().len()) <= MAX_DELEGATORS as usize,
                        "Ratify::Genesis(..) exceeds the maximum number of delegators"
                    );
                    // Ensure genesis has not been ratified yet.
                    ensure!(!is_genesis_ratified, "Ratify::Genesis(..) has already been ratified");

                    // TODO (howardwu): Consider whether to initialize the mappings here.
                    //  Currently, this is breaking for test cases that use VM but do not insert the genesis block.
                    // // Initialize the store for 'credits.aleo'.
                    // let credits = Program::<N>::credits()?;
                    // for mapping in credits.mappings().values() {
                    //     // Ensure that all mappings are initialized.
                    //     if !store.contains_mapping_confirmed(credits.id(), mapping.name())? {
                    //         // Initialize the mappings for 'credits.aleo'.
                    //         finalize_operations.push(store.initialize_mapping(*credits.id(), *mapping.name())?);
                    //     }
                    // }

                    // Calculate the stake per validator using `bonded_balances`.
                    //
                    // Note: There is no need to check the `delegated` mapping in the genesis block,
                    // because the design of `bonded_balances` by definition does not support
                    // delegating to a non-bonded validator. Thus, the assumption is that the
                    // `delegated` mapping will be correct by construction.
                    let mut stake_per_validator = IndexMap::with_capacity(committee.members().len());
                    for (address, (validator_address, _, amount)) in bonded_balances.iter() {
                        // Check that the amount meets the minimum requirement, depending on whether the address is a validator.
                        if *address == *validator_address {
                            ensure!(
                                *amount >= MIN_VALIDATOR_SELF_STAKE,
                                "Ratify::Genesis(..) the validator {address} must stake at least {MIN_VALIDATOR_SELF_STAKE}",
                            );
                        } else {
                            ensure!(
                                *amount >= MIN_DELEGATOR_STAKE,
                                "Ratify::Genesis(..) the delegator {address} must stake at least {MIN_DELEGATOR_STAKE}",
                            );
                            // If the corresponding validator is not a committee member yet, then continue.
                            if !committee.is_committee_member(*validator_address) {
                                continue;
                            }
                            // If the address is a delegator, check that the corresponding validator is open.
                            ensure!(
                                committee.is_committee_member_open(*validator_address),
                                "Ratify::Genesis(..) the delegator {address} is delegating to a closed validator {validator_address}",
                            );
                        }
                        // Accumulate the staked amount per validator.
                        let total = stake_per_validator.entry(validator_address).or_insert(0u64);
                        *total = total.saturating_add(*amount);
                    }
                    // Ensure the stake per validator matches the committee.
                    ensure!(
                        stake_per_validator.len() == committee.members().len(),
                        "Ratify::Genesis(..) the number of validators in the committee does not match the number of validators in the bonded balances",
                    );

                    // Check that `committee` is consistent with `stake_per_validator`.
                    for (validator_address, amount) in &stake_per_validator {
                        // Retrieve the expected validator stake from the committee.
                        let Some((expected_amount, _, _)) = committee.members().get(*validator_address) else {
                            bail!(
                                "Ratify::Genesis(..) found a validator in the bonded balances that is not in the committee"
                            )
                        };
                        // Ensure the staked amount matches the committee.
                        ensure!(
                            *expected_amount == *amount,
                            "Ratify::Genesis(..) inconsistent staked amount for validator {validator_address}",
                        );
                    }
                    // Ensure that the total stake matches the sum of the staked amounts.
                    ensure!(
                        committee.total_stake() == stake_per_validator.values().sum::<u64>(),
                        "Ratify::Genesis(..) incorrect total total stake for the committee"
                    );

                    // Split the bonded balances into stakers and withdrawal addresses.
                    let (next_stakers, withdrawal_addresses) = bonded_balances.iter().fold(
                        (
                            IndexMap::with_capacity(bonded_balances.len()),
                            IndexMap::with_capacity(bonded_balances.len()),
                        ),
                        |(mut stakers, mut withdrawal_addresses), (staker, (validator, withdrawal_address, amount))| {
                            stakers.insert(*staker, (*validator, *amount));
                            withdrawal_addresses.insert(*staker, *withdrawal_address);
                            (stakers, withdrawal_addresses)
                        },
                    );

                    let next_delegated = to_next_delegated(&next_stakers);

                    // Construct the next committee map and next bonded map.
                    let (next_committee_map, next_bonded_map, next_delegated_map) =
                        to_next_committee_bonded_delegated_map(committee, &next_stakers, &next_delegated);

                    // Construct the next withdraw map.
                    let next_withdraw_map = to_next_withdraw_map(&withdrawal_addresses);

                    // Insert the next committee into storage.
                    store.committee_store().insert(state.block_height(), *(committee.clone()))?;
                    // Store the finalize operations for updating the committee and bonded mapping.
                    finalize_operations.extend(&[
                        // Replace the committee mapping in storage.
                        store.replace_mapping(program_id, committee_mapping, next_committee_map)?,
                        // Replace the delegated mapping in storage.
                        store.replace_mapping(program_id, delegated_mapping, next_delegated_map)?,
                        // Replace the bonded mapping in storage.
                        store.replace_mapping(program_id, bonded_mapping, next_bonded_map)?,
                        // Replace the withdraw mapping in storage.
                        store.replace_mapping(program_id, withdraw_mapping, next_withdraw_map)?,
                    ]);

                    // Update the number of validators.
                    finalize_operations.extend(&[
                        // Update the number of validators in the metadata mapping.
                        store.update_key_value(
                            program_id,
                            metadata_mapping,
                            Plaintext::from_str("aleo1qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq3ljyzc")?,
                            Value::from_str(&format!("{}u32", committee.num_members()))?,
                        )?,
                    ]);

                    // Update the number of delegators.
                    finalize_operations.extend(&[
                        // Update the number of delegators in the metadata mapping.
                        store.update_key_value(
                            program_id,
                            metadata_mapping,
                            Plaintext::from_str("aleo1qgqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqanmpl0")?,
                            Value::from_str(&format!(
                                "{}u32",
                                bonded_balances.len().saturating_sub(committee.num_members())
                            ))?,
                        )?,
                    ]);

                    // Map the public balances into the appropriate format.
                    let public_balances = public_balances
                        .iter()
                        .map(|(address, amount)| {
                            (Plaintext::from(Literal::Address(*address)), Value::from(Literal::U64(U64::new(*amount))))
                        })
                        .collect::<Vec<_>>();

                    // Update the public balances.
                    finalize_operations.extend(&[
                        // Update the public balances in storage.
                        store.replace_mapping(program_id, account_mapping, public_balances)?,
                    ]);

                    // Set the genesis ratification flag.
                    is_genesis_ratified = true;
                }
                Ratify::BlockReward(..) | Ratify::PuzzleReward(..) => continue,
            }
        }

        // Return the finalize operations.
        Ok(finalize_operations)
    }

    /// Performs the post-ratifications after finalizing transactions.
    #[inline]
    fn atomic_post_ratify<'a, const IS_FINALIZE: bool>(
        puzzle: &Puzzle<N>,
        store: &FinalizeStore<N, C::FinalizeStorage>,
        state: FinalizeGlobalState,
        post_ratifications: impl Iterator<Item = &'a Ratify<N>>,
        solutions: &Solutions<N>,
    ) -> Result<Vec<FinalizeOperation<N>>> {
        // Construct the program ID.
        let program_id = ProgramID::from_str("credits.aleo")?;
        // Construct the committee mapping name.
        let committee_mapping = Identifier::from_str("committee")?;
        // Construct the delegated mapping name.
        let delegated_mapping = Identifier::from_str("delegated")?;
        // Construct the bonded mapping name.
        let bonded_mapping = Identifier::from_str("bonded")?;
        // Construct the account mapping name.
        let account_mapping = Identifier::from_str("account")?;

        // Initialize a list of finalize operations.
        let mut finalize_operations = Vec::new();

        // Initialize a flag for the block reward ratification.
        let mut is_block_reward_ratified = false;
        // Initialize a flag for the puzzle reward ratification.
        let mut is_puzzle_reward_ratified = false;

        // Iterate over the ratifications.
        for ratify in post_ratifications {
            match ratify {
                Ratify::Genesis(..) => continue,
                Ratify::BlockReward(block_reward) => {
                    // Ensure the block reward has not been ratified yet.
                    ensure!(!is_block_reward_ratified, "Ratify::BlockReward(..) has already been ratified");

                    // Retrieve the committee mapping from storage.
                    let current_committee_map = store.get_mapping_speculative(program_id, committee_mapping)?;
                    // Retrieve the delegator mapping from storage.
                    let current_delegator_map = store.get_mapping_speculative(program_id, delegated_mapping)?;
                    // Convert the committee mapping into a committee.
                    let current_committee = committee_and_delegated_maps_into_committee(
                        state.block_round(),
                        current_committee_map,
                        current_delegator_map,
                    )?;
                    // Retrieve the bonded mapping from storage.
                    let current_bonded_map = store.get_mapping_speculative(program_id, bonded_mapping)?;
                    // Convert the bonded map into stakers.
                    let current_stakers = bonded_map_into_stakers(current_bonded_map)?;

                    // Ensure the committee matches the bonded mapping.
                    ensure_stakers_matches(&current_committee, &current_stakers)?;

                    // Compute the updated stakers, using the committee and block reward.
                    let next_stakers = staking_rewards(&current_stakers, &current_committee, *block_reward);

                    // Compute the updated delegated amounts, using the next_stakers updated amounts.
                    let next_delegated = to_next_delegated(&next_stakers);

                    // Compute the updated committee, using the delegatees.
                    let next_committee = to_next_committee(&current_committee, state.block_round(), &next_delegated)?;

                    // Construct the next committee map, the next bonded map, and the next delegated map.
                    let (next_committee_map, next_bonded_map, next_delegated_map) =
                        to_next_committee_bonded_delegated_map(&next_committee, &next_stakers, &next_delegated);

                    // Insert the next committee into storage.
                    store.committee_store().insert(state.block_height(), next_committee)?;

                    #[cfg(all(feature = "history", feature = "rocks"))]
                    {
                        // When finalizing in `FinalizeMode::RealRun`, store the delegated and bonded mappings in history.
                        if IS_FINALIZE {
                            // Load a `History` object.
                            let history = History::new(N::ID, store.storage_mode());

                            // Write the delegated mapping as JSON.
                            history.store_mapping(state.block_height(), MappingName::Delegated, &next_delegated_map)?;

                            // Write the bonded mapping as JSON.
                            history.store_mapping(state.block_height(), MappingName::Bonded, &next_bonded_map)?;

                            // Write the metadata mapping as JSON.
                            let metadata_mapping = Identifier::from_str("metadata")?;
                            let metadata_map = store.get_mapping_speculative(program_id, metadata_mapping)?;
                            history.store_mapping(state.block_height(), MappingName::Metadata, &metadata_map)?;

                            // Write the unbonding mapping as JSON.
                            let unbonding_mapping = Identifier::from_str("unbonding")?;
                            let unbonding_map = store.get_mapping_speculative(program_id, unbonding_mapping)?;
                            history.store_mapping(state.block_height(), MappingName::Unbonding, &unbonding_map)?;

                            // Write the withdraw mapping as JSON.
                            let withdraw_mapping = Identifier::from_str("withdraw")?;
                            let withdraw_map = store.get_mapping_speculative(program_id, withdraw_mapping)?;
                            history.store_mapping(state.block_height(), MappingName::Withdraw, &withdraw_map)?;
                        }
                    }

                    // Store the finalize operations for updating the committee and bonded mapping.
                    finalize_operations.extend(&[
                        // Replace the committee mapping in storage.
                        store.replace_mapping(program_id, committee_mapping, next_committee_map)?,
                        // Replace the delegated mapping in storage.
                        store.replace_mapping(program_id, delegated_mapping, next_delegated_map)?,
                        // Replace the bonded mapping in storage.
                        store.replace_mapping(program_id, bonded_mapping, next_bonded_map)?,
                    ]);

                    // Set the block reward ratification flag.
                    is_block_reward_ratified = true;
                }
                Ratify::PuzzleReward(puzzle_reward) => {
                    // Ensure the puzzle reward has not been ratified yet.
                    ensure!(!is_puzzle_reward_ratified, "Ratify::PuzzleReward(..) has already been ratified");

                    // If the puzzle reward is zero, skip.
                    if *puzzle_reward == 0 {
                        continue;
                    }
                    // Retrieve the solutions.
                    let Some(solutions) = solutions.deref() else {
                        continue;
                    };
                    // Compute the proof targets, with the corresponding addresses.
                    let proof_targets = solutions
                        .values()
                        .map(|s| Ok((s.address(), puzzle.get_proof_target(s)?)))
                        .collect::<Result<Vec<_>>>()?;
                    // Calculate the proving rewards.
                    let proving_rewards = proving_rewards(proof_targets, *puzzle_reward);
                    // Iterate over the proving rewards.
                    for (address, amount) in proving_rewards {
                        // Construct the key.
                        let key = Plaintext::from(Literal::Address(address));
                        // Retrieve the current public balance.
                        let value = store.get_value_speculative(program_id, account_mapping, &key)?;
                        // Compute the next public balance.
                        let next_value = Value::from(Literal::U64(U64::new(match value {
                            Some(Value::Plaintext(Plaintext::Literal(Literal::U64(value), _))) => {
                                (*value).saturating_add(amount)
                            }
                            None => amount,
                            v => bail!("Critical bug in post-ratify puzzle reward- Invalid amount ({v:?})"),
                        })));
                        // Update the public balance in finalize storage.
                        let operation = store.update_key_value(program_id, account_mapping, key, next_value)?;
                        finalize_operations.push(operation);
                    }

                    // Set the puzzle reward ratification flag.
                    is_puzzle_reward_ratified = true;
                }
            }
        }

        // Return the finalize operations.
        Ok(finalize_operations)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::vm::{
        test_helpers,
        test_helpers::{sample_finalize_state, sample_vm},
    };
    use console::{
        account::{Address, PrivateKey, ViewKey},
        program::{Ciphertext, Entry, Record},
        types::Field,
    };
    use ledger_block::{Block, Header, Metadata, Transaction, Transition};
    use ledger_committee::{MAX_DELEGATORS, MIN_VALIDATOR_STAKE};
    use ledger_store::helpers::memory::ConsensusMemory;
    use synthesizer_program::Program;

    use rand::distributions::DistString;

    type CurrentNetwork = test_helpers::CurrentNetwork;

    /// Sample a new program and deploy it to the VM. Returns the program name.
    fn new_program_deployment<R: Rng + CryptoRng>(
        vm: &VM<CurrentNetwork, ConsensusMemory<CurrentNetwork>>,
        private_key: &PrivateKey<CurrentNetwork>,
        previous_block: &Block<CurrentNetwork>,
        unspent_records: &mut Vec<Record<CurrentNetwork, Ciphertext<CurrentNetwork>>>,
        rng: &mut R,
    ) -> Result<(String, Block<CurrentNetwork>)> {
        let program_name = format!("a{}.aleo", Alphanumeric.sample_string(rng, 8).to_lowercase());

        let program = Program::<CurrentNetwork>::from_str(&format!(
            "
program {program_name};

mapping account:
    // The token owner.
    key as address.public;
    // The token amount.
    value as u64.public;

function mint_public:
    input r0 as address.public;
    input r1 as u64.public;
    async mint_public r0 r1 into r2;
    output r2 as {program_name}/mint_public.future;

finalize mint_public:
    input r0 as address.public;
    input r1 as u64.public;

    get.or_use account[r0] 0u64 into r2;
    add r2 r1 into r3;
    set r3 into account[r0];

function transfer_public:
    input r0 as address.public;
    input r1 as u64.public;
    async transfer_public self.caller r0 r1 into r2;
    output r2 as {program_name}/transfer_public.future;

finalize transfer_public:
    input r0 as address.public;
    input r1 as address.public;
    input r2 as u64.public;

    get.or_use account[r0] 0u64 into r3;
    get.or_use account[r1] 0u64 into r4;

    sub r3 r2 into r5;
    add r4 r2 into r6;

    set r5 into account[r0];
    set r6 into account[r1];"
        ))?;

        // Prepare the additional fee.
        let view_key = ViewKey::<CurrentNetwork>::try_from(private_key)?;
        let credits = Some(unspent_records.pop().unwrap().decrypt(&view_key)?);

        // Deploy.
        let transaction = vm.deploy(private_key, &program, credits, 10, None, rng)?;

        // Construct the new block.
        let next_block = sample_next_block(vm, private_key, &[transaction], previous_block, unspent_records, rng)?;

        Ok((program_name, next_block))
    }

    /// Construct a new block based on the given transactions.
    fn sample_next_block<R: Rng + CryptoRng>(
        vm: &VM<CurrentNetwork, ConsensusMemory<CurrentNetwork>>,
        private_key: &PrivateKey<CurrentNetwork>,
        transactions: &[Transaction<CurrentNetwork>],
        previous_block: &Block<CurrentNetwork>,
        unspent_records: &mut Vec<Record<CurrentNetwork, Ciphertext<CurrentNetwork>>>,
        rng: &mut R,
    ) -> Result<Block<CurrentNetwork>> {
        // Speculate on the candidate ratifications, solutions, and transactions.
        let time_since_last_block = CurrentNetwork::BLOCK_TIME as i64;
        let (ratifications, transactions, aborted_transaction_ids, ratified_finalize_operations) = vm.speculate(
            sample_finalize_state(previous_block.height() + 1),
            time_since_last_block,
            None,
            vec![],
            &None.into(),
            transactions.iter(),
            rng,
        )?;

        // Construct the metadata associated with the block.
        let metadata = Metadata::new(
            CurrentNetwork::ID,
            previous_block.round() + 1,
            previous_block.height() + 1,
            0,
            0,
            CurrentNetwork::GENESIS_COINBASE_TARGET,
            CurrentNetwork::GENESIS_PROOF_TARGET,
            previous_block.last_coinbase_target(),
            previous_block.last_coinbase_timestamp(),
            previous_block.timestamp().saturating_add(time_since_last_block),
        )?;

        // Construct the new block header.
        let header = Header::from(
            vm.block_store().current_state_root(),
            transactions.to_transactions_root().unwrap(),
            transactions.to_finalize_root(ratified_finalize_operations).unwrap(),
            ratifications.to_ratifications_root().unwrap(),
            Field::zero(),
            Field::zero(),
            metadata,
        )?;

        let block = Block::new_beacon(
            private_key,
            previous_block.hash(),
            header,
            ratifications,
            None.into(),
            vec![],
            transactions,
            aborted_transaction_ids,
            rng,
        )?;

        // Track the new records.
        let new_records = block
            .transitions()
            .cloned()
            .flat_map(Transition::into_records)
            .map(|(_, record)| record)
            .collect::<Vec<_>>();
        unspent_records.extend(new_records);

        Ok(block)
    }

    /// Generate split transactions for the unspent records.
    fn generate_splits<R: Rng + CryptoRng>(
        vm: &VM<CurrentNetwork, ConsensusMemory<CurrentNetwork>>,
        private_key: &PrivateKey<CurrentNetwork>,
        previous_block: &Block<CurrentNetwork>,
        unspent_records: &mut Vec<Record<CurrentNetwork, Ciphertext<CurrentNetwork>>>,
        rng: &mut R,
    ) -> Result<Block<CurrentNetwork>> {
        // Prepare the additional fee.
        let view_key = ViewKey::<CurrentNetwork>::try_from(private_key)?;

        // Generate split transactions.
        let mut transactions = Vec::new();
        while !unspent_records.is_empty() {
            let record = unspent_records.pop().unwrap().decrypt(&view_key)?;

            // Fetch the record balance and divide it in half.
            let split_balance = match record.find(&[Identifier::from_str("microcredits")?]) {
                Ok(Entry::Private(Plaintext::Literal(Literal::U64(amount), _))) => *amount / 2,
                _ => bail!("fee record does not contain a microcredits entry"),
            };

            // Prepare the inputs.
            let inputs = [
                Value::<CurrentNetwork>::Record(record),
                Value::<CurrentNetwork>::from_str(&format!("{split_balance}u64")).unwrap(),
            ]
            .into_iter();

            // Execute.
            let transaction = vm.execute(private_key, ("credits.aleo", "split"), inputs, None, 0, None, rng).unwrap();

            transactions.push(transaction);
        }

        // Construct the new block.
        sample_next_block(vm, private_key, &transactions, previous_block, unspent_records, rng)
    }

    /// Create an execution transaction.
    fn create_execution(
        vm: &VM<CurrentNetwork, ConsensusMemory<CurrentNetwork>>,
        caller_private_key: PrivateKey<CurrentNetwork>,
        program_id: &str,
        function_name: &str,
        inputs: Vec<Value<CurrentNetwork>>,
        unspent_records: &mut Vec<Record<CurrentNetwork, Ciphertext<CurrentNetwork>>>,
        rng: &mut TestRng,
    ) -> Transaction<CurrentNetwork> {
        assert!(vm.contains_program(&ProgramID::from_str(program_id).unwrap()));

        // Prepare the additional fee.
        let view_key = ViewKey::<CurrentNetwork>::try_from(caller_private_key).unwrap();
        let credits = Some(unspent_records.pop().unwrap().decrypt(&view_key).unwrap());

        // Execute.
        let transaction = vm
            .execute(&caller_private_key, (program_id, function_name), inputs.into_iter(), credits, 1, None, rng)
            .unwrap();
        // Verify.
        vm.check_transaction(&transaction, None, rng).unwrap();

        // Return the transaction.
        transaction
    }

    /// Sample a public mint transaction.
    fn sample_mint_public(
        vm: &VM<CurrentNetwork, ConsensusMemory<CurrentNetwork>>,
        caller_private_key: PrivateKey<CurrentNetwork>,
        program_id: &str,
        recipient: Address<CurrentNetwork>,
        amount: u64,
        unspent_records: &mut Vec<Record<CurrentNetwork, Ciphertext<CurrentNetwork>>>,
        rng: &mut TestRng,
    ) -> Transaction<CurrentNetwork> {
        let inputs = vec![
            Value::<CurrentNetwork>::from_str(&recipient.to_string()).unwrap(),
            Value::<CurrentNetwork>::from_str(&format!("{amount}u64")).unwrap(),
        ];

        create_execution(vm, caller_private_key, program_id, "mint_public", inputs, unspent_records, rng)
    }

    /// Sample a public transfer transaction.
    fn sample_transfer_public(
        vm: &VM<CurrentNetwork, ConsensusMemory<CurrentNetwork>>,
        caller_private_key: PrivateKey<CurrentNetwork>,
        program_id: &str,
        recipient: Address<CurrentNetwork>,
        amount: u64,
        unspent_records: &mut Vec<Record<CurrentNetwork, Ciphertext<CurrentNetwork>>>,
        rng: &mut TestRng,
    ) -> Transaction<CurrentNetwork> {
        let inputs = vec![
            Value::<CurrentNetwork>::from_str(&recipient.to_string()).unwrap(),
            Value::<CurrentNetwork>::from_str(&format!("{amount}u64")).unwrap(),
        ];

        create_execution(vm, caller_private_key, program_id, "transfer_public", inputs, unspent_records, rng)
    }

    /// A helper method to construct the rejected transaction format for `atomic_finalize`.
    fn reject(
        index: u32,
        transaction: &Transaction<CurrentNetwork>,
        finalize: &[FinalizeOperation<CurrentNetwork>],
    ) -> ConfirmedTransaction<CurrentNetwork> {
        match transaction {
            Transaction::Execute(_, execution, fee) => ConfirmedTransaction::RejectedExecute(
                index,
                Transaction::from_fee(fee.clone().unwrap()).unwrap(),
                Rejected::new_execution(execution.clone()),
                finalize.to_vec(),
            ),
            _ => panic!("only reject execution transactions"),
        }
    }

    /// Samples the validators.
    fn sample_validators<N: Network>(
        num_validators: usize,
        rng: &mut TestRng,
    ) -> IndexMap<PrivateKey<N>, (u64, bool, u8)> {
        (0..num_validators)
            .map(|_| {
                let private_key = PrivateKey::new(rng).unwrap();
                let amount = MIN_VALIDATOR_STAKE;
                let is_open = true;
                let commission: u8 = 0;
                (private_key, (amount, is_open, commission))
            })
            .collect::<IndexMap<_, _>>()
    }

    /// Returns a `committee_map` and the `allocated_amount` given the validators and delegators.
    fn sample_committee_map_and_allocated_amount<N: Network>(
        validators: &IndexMap<PrivateKey<N>, (u64, bool, u8)>,
        delegators: &IndexMap<PrivateKey<N>, (Address<N>, u64)>,
    ) -> (IndexMap<Address<N>, (u64, bool, u8)>, u64) {
        // Reset the tracked amount.
        let mut allocated_amount = 0;

        // Construct the **correct** committee.
        let mut committee_map = IndexMap::new();
        for (private_key, (amount, is_open, commission)) in validators {
            let address = Address::try_from(private_key).unwrap();
            committee_map.insert(address, (*amount, *is_open, *commission));
            allocated_amount += amount;
        }
        for (delegator, (validator, amount)) in delegators {
            if let indexmap::map::Entry::Occupied(mut entry) = committee_map.entry(*validator) {
                let (current_amount, is_open, commission) = entry.get();
                // Ensure the validator is open.
                assert!(*is_open, "delegator {delegator} is delegating {amount} microcredits to a closed validator");
                // Update the committee map.
                entry.insert((current_amount + amount, *is_open, *commission));
            } else {
                unreachable!("delegator {delegator} is delegating to a closed validator")
            }
            // Accumulate the allocated amount.
            allocated_amount += amount;
        }

        (committee_map, allocated_amount)
    }

    /// Returns the `bonded_balances` given the validators and delegators.
    /// Note that the withdrawal address is the same as the staker address.
    fn sample_bonded_balances<N: Network>(
        validators: &IndexMap<PrivateKey<N>, (u64, bool, u8)>,
        delegators: &IndexMap<PrivateKey<N>, (Address<N>, u64)>,
    ) -> IndexMap<Address<N>, (Address<N>, Address<N>, u64)> {
        let mut bonded_balances = IndexMap::with_capacity(validators.len() + delegators.len());
        for (private_key, (amount, _, _)) in validators {
            let address = Address::try_from(private_key).unwrap();
            bonded_balances.insert(address, (address, address, *amount));
        }
        for (private_key, (validator, amount)) in delegators {
            let address = Address::try_from(private_key).unwrap();
            bonded_balances.insert(address, (*validator, address, *amount));
        }
        bonded_balances
    }

    /// Returns the `public_balances` given the addresses and total amount.
    /// Note that the balances are evenly distributed among the addresses.
    fn sample_public_balances<N: Network>(addresses: &[Address<N>], total_amount: u64) -> IndexMap<Address<N>, u64> {
        // Check that the addresses are not empty.
        assert!(!addresses.is_empty(), "must provide at least one address");
        // Distribute the total amount evenly among the addresses.
        let amount_per_address = total_amount / addresses.len() as u64;
        let mut public_balances: IndexMap<_, _> =
            addresses.iter().map(|address| (*address, amount_per_address)).collect();
        // Distribute the remainder to the first address.
        let remaining = total_amount % addresses.len() as u64;
        if remaining > 0 {
            *public_balances.get_mut(&addresses[0]).unwrap() += remaining;
        }
        // Return the public balances.
        public_balances
    }

    #[test]
    fn test_finalize_duplicate_deployment() {
        let rng = &mut TestRng::default();

        let vm = crate::vm::test_helpers::sample_vm();

        // Fetch a deployment transaction.
        let deployment_transaction = crate::vm::test_helpers::sample_deployment_transaction(rng);
        let deployment_transaction_id = deployment_transaction.id();

        // Construct the program name.
        let program_id = ProgramID::from_str("testing.aleo").unwrap();

        // Prepare the confirmed transactions.
        let (ratifications, confirmed_transactions, aborted_transaction_ids, _) = vm
            .speculate(
                sample_finalize_state(1),
                CurrentNetwork::BLOCK_TIME as i64,
                None,
                vec![],
                &None.into(),
                [deployment_transaction.clone()].iter(),
                rng,
            )
            .unwrap();
        assert_eq!(confirmed_transactions.len(), 1);
        assert!(aborted_transaction_ids.is_empty());

        // Ensure the VM does not contain this program.
        assert!(!vm.contains_program(&program_id));

        // Finalize the transaction.
        assert!(vm.finalize(sample_finalize_state(1), &ratifications, &None.into(), &confirmed_transactions).is_ok());

        // Ensure the VM contains this program.
        assert!(vm.contains_program(&program_id));

        // Ensure the VM can't redeploy the same transaction.
        assert!(vm.finalize(sample_finalize_state(1), &ratifications, &None.into(), &confirmed_transactions).is_err());

        // Ensure the VM contains this program.
        assert!(vm.contains_program(&program_id));

        // Ensure the dry run of the redeployment will cause a reject transaction to be created.
        let (_, candidate_transactions, aborted_transaction_ids, _) = vm
            .atomic_speculate(
                sample_finalize_state(1),
                CurrentNetwork::BLOCK_TIME as i64,
                None,
                vec![],
                &None.into(),
                [deployment_transaction].iter(),
            )
            .unwrap();
        assert_eq!(candidate_transactions.len(), 1);
        assert!(matches!(candidate_transactions[0], ConfirmedTransaction::RejectedDeploy(..)));
        assert!(aborted_transaction_ids.is_empty());

        // Check that the unconfirmed transaction ID of the rejected deployment is correct.
        assert_eq!(candidate_transactions[0].to_unconfirmed_transaction_id().unwrap(), deployment_transaction_id);
    }

    #[test]
    fn test_bond_validator_above_maximum_fails() {
        // Initialize an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Initialize the validators with the maximum number of validators.
        let validators =
            sample_validators::<CurrentNetwork>(Committee::<CurrentNetwork>::MAX_COMMITTEE_SIZE as usize, rng);

        // Initialize a new address.
        let new_validator_private_key = PrivateKey::<CurrentNetwork>::new(rng).unwrap();
        let new_validator_address = Address::try_from(&new_validator_private_key).unwrap();

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) =
            sample_committee_map_and_allocated_amount(&validators, &IndexMap::new());

        // Collect all of the addresses in a single place
        let validator_addresses =
            validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>();

        // Construct the public balances, allocating the remaining supply.
        let new_validator_balance = MIN_VALIDATOR_STAKE + 100_000_000;
        let mut public_balances = sample_public_balances(
            &validator_addresses,
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount - new_validator_balance,
        );
        // Set the public balance of the new validator to the minimum validator stake.
        public_balances.insert(new_validator_address, new_validator_balance);

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &IndexMap::new());

        // Construct the genesis block, which should pass.
        let block = vm
            .genesis_quorum(
                validators.keys().next().unwrap(),
                Committee::new_genesis(committee_map).unwrap(),
                public_balances,
                bonded_balances,
                rng,
            )
            .unwrap();

        // Add the block.
        vm.add_next_block(&block).unwrap();

        // Attempt to bond a new validator above the maximum number of validators.
        let inputs = vec![
            Value::<CurrentNetwork>::from_str(&validator_addresses.first().unwrap().to_string()).unwrap(), // Withdrawal address
            Value::<CurrentNetwork>::from_str(&format!("{MIN_VALIDATOR_STAKE}u64")).unwrap(),              // Amount
            Value::<CurrentNetwork>::from_str("42u8").unwrap(),                                            // Commission
        ];

        // Execute.
        let bond_validator_transaction = vm
            .execute(
                &new_validator_private_key,
                ("credits.aleo", "bond_validator"),
                inputs.into_iter(),
                None,
                1,
                None,
                rng,
            )
            .unwrap();

        // Verify.
        vm.check_transaction(&bond_validator_transaction, None, rng).unwrap();

        // Speculate on the transactions.
        let transactions = [bond_validator_transaction.clone()];
        let (_, confirmed_transactions, _, _) = vm
            .atomic_speculate(
                sample_finalize_state(1),
                CurrentNetwork::BLOCK_TIME as i64,
                None,
                vec![],
                &None.into(),
                transactions.iter(),
            )
            .unwrap();

        // Assert that the transaction is rejected.
        assert_eq!(confirmed_transactions.len(), 1);
        assert_eq!(
            confirmed_transactions[0],
            reject(0, &bond_validator_transaction, confirmed_transactions[0].finalize_operations())
        );
    }

    #[test]
    fn test_atomic_finalize_many() {
        let rng = &mut TestRng::default();

        // Sample a private key and address for the caller.
        let caller_private_key = test_helpers::sample_genesis_private_key(rng);
        let caller_address = Address::try_from(&caller_private_key).unwrap();

        // Sample a private key and address for the recipient.
        let recipient_private_key = PrivateKey::new(rng).unwrap();
        let recipient_address = Address::try_from(&recipient_private_key).unwrap();

        // Initialize the vm.
        let vm = test_helpers::sample_vm_with_genesis_block(rng);

        // Deploy a new program.
        let genesis =
            vm.block_store().get_block(&vm.block_store().get_block_hash(0).unwrap().unwrap()).unwrap().unwrap();

        // Get the unspent records.
        let mut unspent_records = genesis
            .transitions()
            .cloned()
            .flat_map(Transition::into_records)
            .map(|(_, record)| record)
            .collect::<Vec<_>>();

        // Construct the deployment block.
        let (program_id, deployment_block) =
            new_program_deployment(&vm, &caller_private_key, &genesis, &mut unspent_records, rng).unwrap();

        // Add the deployment block to the VM.
        vm.add_next_block(&deployment_block).unwrap();

        // Generate more records to use for the next block.
        let splits_block =
            generate_splits(&vm, &caller_private_key, &deployment_block, &mut unspent_records, rng).unwrap();

        // Add the splits block to the VM.
        vm.add_next_block(&splits_block).unwrap();

        // Construct the initial mint.
        let initial_mint =
            sample_mint_public(&vm, caller_private_key, &program_id, caller_address, 20, &mut unspent_records, rng);
        let initial_mint_block =
            sample_next_block(&vm, &caller_private_key, &[initial_mint], &splits_block, &mut unspent_records, rng)
                .unwrap();

        // Add the block to the vm.
        vm.add_next_block(&initial_mint_block).unwrap();

        // Construct a mint and a transfer.
        let mint_10 =
            sample_mint_public(&vm, caller_private_key, &program_id, caller_address, 10, &mut unspent_records, rng);
        let mint_20 =
            sample_mint_public(&vm, caller_private_key, &program_id, caller_address, 20, &mut unspent_records, rng);
        let transfer_10 = sample_transfer_public(
            &vm,
            caller_private_key,
            &program_id,
            recipient_address,
            10,
            &mut unspent_records,
            rng,
        );
        let transfer_20 = sample_transfer_public(
            &vm,
            caller_private_key,
            &program_id,
            recipient_address,
            20,
            &mut unspent_records,
            rng,
        );
        let transfer_30 = sample_transfer_public(
            &vm,
            caller_private_key,
            &program_id,
            recipient_address,
            30,
            &mut unspent_records,
            rng,
        );

        // TODO (raychu86): Confirm that the finalize_operations here are correct.

        // Starting Balance = 20
        // Mint_10 -> Balance = 20 + 10  = 30
        // Transfer_10 -> Balance = 30 - 10 = 20
        // Transfer_20 -> Balance = 20 - 20 = 0
        {
            let transactions = [mint_10.clone(), transfer_10.clone(), transfer_20.clone()];
            let (_, confirmed_transactions, aborted_transaction_ids, _) = vm
                .atomic_speculate(
                    sample_finalize_state(1),
                    CurrentNetwork::BLOCK_TIME as i64,
                    None,
                    vec![],
                    &None.into(),
                    transactions.iter(),
                )
                .unwrap();

            // Assert that all the transactions are accepted.
            assert_eq!(confirmed_transactions.len(), 3);
            confirmed_transactions.iter().for_each(|confirmed_tx| assert!(confirmed_tx.is_accepted()));
            assert!(aborted_transaction_ids.is_empty());

            assert_eq!(confirmed_transactions[0].transaction(), &mint_10);
            assert_eq!(confirmed_transactions[1].transaction(), &transfer_10);
            assert_eq!(confirmed_transactions[2].transaction(), &transfer_20);
        }

        // Starting Balance = 20
        // Transfer_20 -> Balance = 20 - 20 = 0
        // Mint_10 -> Balance = 0 + 10 = 10
        // Mint_20 -> Balance = 10 + 20 = 30
        // Transfer_30 -> Balance = 30 - 30 = 0
        {
            let transactions = [transfer_20.clone(), mint_10.clone(), mint_20.clone(), transfer_30.clone()];
            let (_, confirmed_transactions, aborted_transaction_ids, _) = vm
                .atomic_speculate(
                    sample_finalize_state(1),
                    CurrentNetwork::BLOCK_TIME as i64,
                    None,
                    vec![],
                    &None.into(),
                    transactions.iter(),
                )
                .unwrap();

            // Assert that all the transactions are accepted.
            assert_eq!(confirmed_transactions.len(), 4);
            confirmed_transactions.iter().for_each(|confirmed_tx| assert!(confirmed_tx.is_accepted()));
            assert!(aborted_transaction_ids.is_empty());

            // Ensure that the transactions are in the correct order.
            assert_eq!(confirmed_transactions[0].transaction(), &transfer_20);
            assert_eq!(confirmed_transactions[1].transaction(), &mint_10);
            assert_eq!(confirmed_transactions[2].transaction(), &mint_20);
            assert_eq!(confirmed_transactions[3].transaction(), &transfer_30);
        }

        // Starting Balance = 20
        // Transfer_20 -> Balance = 20 - 20 = 0
        // Transfer_10 -> Balance = 0 - 10 = -10 (should be rejected)
        {
            let transactions = [transfer_20.clone(), transfer_10.clone()];
            let (_, confirmed_transactions, aborted_transaction_ids, _) = vm
                .atomic_speculate(
                    sample_finalize_state(1),
                    CurrentNetwork::BLOCK_TIME as i64,
                    None,
                    vec![],
                    &None.into(),
                    transactions.iter(),
                )
                .unwrap();

            // Assert that the accepted and rejected transactions are correct.
            assert_eq!(confirmed_transactions.len(), 2);
            assert!(aborted_transaction_ids.is_empty());

            assert!(confirmed_transactions[0].is_accepted());
            assert!(confirmed_transactions[1].is_rejected());

            assert_eq!(confirmed_transactions[0].transaction(), &transfer_20);
            assert_eq!(
                confirmed_transactions[1],
                reject(1, &transfer_10, confirmed_transactions[1].finalize_operations())
            );
        }

        // Starting Balance = 20
        // Mint_20 -> Balance = 20 + 20
        // Transfer_30 -> Balance = 40 - 30 = 10
        // Transfer_20 -> Balance = 10 - 20 = -10 (should be rejected)
        // Transfer_10 -> Balance = 10 - 10 = 0
        {
            let transactions = [mint_20.clone(), transfer_30.clone(), transfer_20.clone(), transfer_10.clone()];
            let (_, confirmed_transactions, aborted_transaction_ids, _) = vm
                .atomic_speculate(
                    sample_finalize_state(1),
                    CurrentNetwork::BLOCK_TIME as i64,
                    None,
                    vec![],
                    &None.into(),
                    transactions.iter(),
                )
                .unwrap();

            // Assert that the accepted and rejected transactions are correct.
            assert_eq!(confirmed_transactions.len(), 4);
            assert!(aborted_transaction_ids.is_empty());

            assert!(confirmed_transactions[0].is_accepted());
            assert!(confirmed_transactions[1].is_accepted());
            assert!(confirmed_transactions[2].is_rejected());
            assert!(confirmed_transactions[3].is_accepted());

            assert_eq!(confirmed_transactions[0].transaction(), &mint_20);
            assert_eq!(confirmed_transactions[1].transaction(), &transfer_30);
            assert_eq!(
                confirmed_transactions[2],
                reject(2, &transfer_20, confirmed_transactions[2].finalize_operations())
            );
            assert_eq!(confirmed_transactions[3].transaction(), &transfer_10);
        }
    }

    #[test]
    fn test_finalize_catch_halt() {
        let rng = &mut TestRng::default();

        // Sample a private key, view key, and address for the caller.
        let caller_private_key = test_helpers::sample_genesis_private_key(rng);
        let caller_view_key = ViewKey::try_from(&caller_private_key).unwrap();

        for finalize_logic in &[
            "finalize ped_hash:
    input r0 as u128.public;
    hash.ped64 r0 into r1 as field;
    set r1 into hashes[r0];",
            "finalize ped_hash:
    input r0 as u128.public;
    div r0 0u128 into r1;",
        ] {
            // Initialize the vm.
            let vm = test_helpers::sample_vm_with_genesis_block(rng);

            // Deploy a new program.
            let genesis =
                vm.block_store().get_block(&vm.block_store().get_block_hash(0).unwrap().unwrap()).unwrap().unwrap();

            // Get the unspent records.
            let mut unspent_records = genesis
                .transitions()
                .cloned()
                .flat_map(Transition::into_records)
                .map(|(_, record)| record)
                .collect::<Vec<_>>();

            // Create a program that will always cause a E::halt in the finalize execution.
            let program_id = "testing.aleo";
            let program = Program::<CurrentNetwork>::from_str(&format!(
                "
program {program_id};

mapping hashes:
    key as u128.public;
    value as field.public;

function ped_hash:
    input r0 as u128.public;
    // hash.ped64 r0 into r1 as field; // <--- This will cause a E::halt.
    async ped_hash r0 into r1;
    output r1 as {program_id}/ped_hash.future;

{finalize_logic}"
            ))
            .unwrap();

            let credits = Some(unspent_records.pop().unwrap().decrypt(&caller_view_key).unwrap());

            // Deploy the program.
            let deployment_transaction = vm.deploy(&caller_private_key, &program, credits, 10, None, rng).unwrap();

            // Construct the deployment block.
            let deployment_block = sample_next_block(
                &vm,
                &caller_private_key,
                &[deployment_transaction],
                &genesis,
                &mut unspent_records,
                rng,
            )
            .unwrap();

            // Add the deployment block to the VM.
            vm.add_next_block(&deployment_block).unwrap();

            // Construct a transaction that will cause a E::halt in the finalize execution.
            let inputs = vec![Value::<CurrentNetwork>::from_str("1u128").unwrap()];
            let transaction =
                create_execution(&vm, caller_private_key, program_id, "ped_hash", inputs, &mut unspent_records, rng);

            // Speculatively execute the transaction. Ensure that this call does not panic and returns a rejected transaction.
            let (_, confirmed_transactions, aborted_transaction_ids, _) = vm
                .speculate(
                    sample_finalize_state(1),
                    CurrentNetwork::BLOCK_TIME as i64,
                    None,
                    vec![],
                    &None.into(),
                    [transaction.clone()].iter(),
                    rng,
                )
                .unwrap();
            assert!(aborted_transaction_ids.is_empty());

            // Ensure that the transaction is rejected.
            assert_eq!(confirmed_transactions.len(), 1);
            assert!(transaction.is_execute());
            if let Transaction::Execute(_, execution, fee) = transaction {
                let fee_transaction = Transaction::from_fee(fee.unwrap()).unwrap();
                let expected_confirmed_transaction = ConfirmedTransaction::RejectedExecute(
                    0,
                    fee_transaction,
                    Rejected::new_execution(execution),
                    vec![],
                );

                let confirmed_transaction = confirmed_transactions.iter().next().unwrap();
                assert_eq!(confirmed_transaction, &expected_confirmed_transaction);
            }
        }
    }

    #[test]
    fn test_rejected_transaction_should_not_update_storage() {
        let rng = &mut TestRng::default();

        // Sample a private key.
        let private_key = test_helpers::sample_genesis_private_key(rng);
        let address = Address::try_from(&private_key).unwrap();

        // Initialize the vm.
        let vm = test_helpers::sample_vm_with_genesis_block(rng);

        // Deploy a new program.
        let genesis =
            vm.block_store().get_block(&vm.block_store().get_block_hash(0).unwrap().unwrap()).unwrap().unwrap();

        // Get the unspent records.
        let mut unspent_records = genesis
            .transitions()
            .cloned()
            .flat_map(Transition::into_records)
            .map(|(_, record)| record)
            .collect::<Vec<_>>();

        // Generate more records to use for the next block.
        let splits_block = generate_splits(&vm, &private_key, &genesis, &mut unspent_records, rng).unwrap();

        // Add the splits block to the VM.
        vm.add_next_block(&splits_block).unwrap();

        // Construct the deployment block.
        let deployment_block = {
            let program = Program::<CurrentNetwork>::from_str(
                "
program testing.aleo;

mapping entries:
    key as address.public;
    value as u8.public;

function compute:
    input r0 as u8.public;
    async compute self.caller r0 into r1;
    output r1 as testing.aleo/compute.future;

finalize compute:
    input r0 as address.public;
    input r1 as u8.public;
    get.or_use entries[r0] r1 into r2;
    add r1 r2 into r3;
    set r3 into entries[r0];
    get entries[r0] into r4;
    add r4 r1 into r5;
    set r5 into entries[r0];
",
            )
            .unwrap();

            // Prepare the additional fee.
            let view_key = ViewKey::<CurrentNetwork>::try_from(private_key).unwrap();
            let credits = Some(unspent_records.pop().unwrap().decrypt(&view_key).unwrap());

            // Deploy.
            let transaction = vm.deploy(&private_key, &program, credits, 10, None, rng).unwrap();

            // Construct the new block.
            sample_next_block(&vm, &private_key, &[transaction], &splits_block, &mut unspent_records, rng).unwrap()
        };

        // Add the deployment block to the VM.
        vm.add_next_block(&deployment_block).unwrap();

        // Generate more records to use for the next block.
        let splits_block = generate_splits(&vm, &private_key, &deployment_block, &mut unspent_records, rng).unwrap();

        // Add the splits block to the VM.
        vm.add_next_block(&splits_block).unwrap();

        // Create an execution transaction, that will be rejected.
        let r0 = Value::<CurrentNetwork>::from_str("100u8").unwrap();
        let first = create_execution(&vm, private_key, "testing.aleo", "compute", vec![r0], &mut unspent_records, rng);

        // Construct the next block.
        let next_block =
            sample_next_block(&vm, &private_key, &[first], &splits_block, &mut unspent_records, rng).unwrap();

        // Check that the transaction was rejected.
        assert!(next_block.transactions().iter().next().unwrap().is_rejected());

        // Add the next block to the VM.
        vm.add_next_block(&next_block).unwrap();

        // Check that the storage was not updated.
        let program_id = ProgramID::from_str("testing.aleo").unwrap();
        let mapping_name = Identifier::from_str("entries").unwrap();
        assert!(
            !vm.finalize_store()
                .contains_key_confirmed(program_id, mapping_name, &Plaintext::from(Literal::Address(address)))
                .unwrap()
        );

        // Create an execution transaction, that will be rejected.
        let r0 = Value::<CurrentNetwork>::from_str("100u8").unwrap();
        let first = create_execution(&vm, private_key, "testing.aleo", "compute", vec![r0], &mut unspent_records, rng);

        // Create an execution transaction, that will be accepted.
        let r0 = Value::<CurrentNetwork>::from_str("1u8").unwrap();
        let second = create_execution(&vm, private_key, "testing.aleo", "compute", vec![r0], &mut unspent_records, rng);

        // Construct the next block.
        let next_block =
            sample_next_block(&vm, &private_key, &[first, second], &next_block, &mut unspent_records, rng).unwrap();

        // Check that the first transaction was rejected.
        assert!(next_block.transactions().iter().next().unwrap().is_rejected());

        // Add the next block to the VM.
        vm.add_next_block(&next_block).unwrap();

        // Check that the storage was updated correctly.
        let value = vm
            .finalize_store()
            .get_value_speculative(program_id, mapping_name, &Plaintext::from(Literal::Address(address)))
            .unwrap()
            .unwrap();
        let expected = Value::<CurrentNetwork>::from_str("3u8").unwrap();
        assert_eq!(value, expected);
    }

    #[test]
    fn test_excess_transactions_should_be_aborted() {
        let rng = &mut TestRng::default();

        // Sample a private key.
        let caller_private_key = test_helpers::sample_genesis_private_key(rng);
        let caller_address = Address::try_from(&caller_private_key).unwrap();

        // Initialize the vm.
        let vm = test_helpers::sample_vm_with_genesis_block(rng);

        // Deploy a new program.
        let genesis =
            vm.block_store().get_block(&vm.block_store().get_block_hash(0).unwrap().unwrap()).unwrap().unwrap();

        // Get the unspent records.
        let mut unspent_records = genesis
            .transitions()
            .cloned()
            .flat_map(Transition::into_records)
            .map(|(_, record)| record)
            .collect::<Vec<_>>();

        // Construct the deployment block.
        let (program_id, deployment_block) =
            new_program_deployment(&vm, &caller_private_key, &genesis, &mut unspent_records, rng).unwrap();

        // Add the deployment block to the VM.
        vm.add_next_block(&deployment_block).unwrap();

        // Generate more records to use for the next block.
        let splits_block =
            generate_splits(&vm, &caller_private_key, &deployment_block, &mut unspent_records, rng).unwrap();

        // Add the splits block to the VM.
        vm.add_next_block(&splits_block).unwrap();

        // Generate more records to use for the next block.
        let splits_block = generate_splits(&vm, &caller_private_key, &splits_block, &mut unspent_records, rng).unwrap();

        // Add the splits block to the VM.
        vm.add_next_block(&splits_block).unwrap();

        // Generate the transactions.
        let mut transactions = Vec::new();
        let mut excess_transaction_ids = Vec::new();

        for _ in 0..VM::<CurrentNetwork, ConsensusMemory<_>>::MAXIMUM_CONFIRMED_TRANSACTIONS + 1 {
            let transaction =
                sample_mint_public(&vm, caller_private_key, &program_id, caller_address, 10, &mut unspent_records, rng);
            // Abort the transaction if the block is full.
            if transactions.len() >= VM::<CurrentNetwork, ConsensusMemory<_>>::MAXIMUM_CONFIRMED_TRANSACTIONS {
                excess_transaction_ids.push(transaction.id());
            }

            transactions.push(transaction);
        }

        // Construct the next block.
        let next_block =
            sample_next_block(&vm, &caller_private_key, &transactions, &splits_block, &mut unspent_records, rng)
                .unwrap();

        // Ensure that the excess transactions were aborted.
        assert_eq!(next_block.aborted_transaction_ids(), &excess_transaction_ids);
        assert_eq!(
            next_block.transactions().len(),
            VM::<CurrentNetwork, ConsensusMemory<_>>::MAXIMUM_CONFIRMED_TRANSACTIONS
        );
    }

    #[test]
    fn test_ratify_genesis_greater_than_max_committee_size() {
        // Initialize an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Construct the validators, greater than the maximum committee size.
        let validators =
            sample_validators::<CurrentNetwork>(Committee::<CurrentNetwork>::MAX_COMMITTEE_SIZE as usize + 1, rng);

        // Construct the committee.
        let mut committee_map = IndexMap::new();
        for (private_key, (amount, _, _)) in &validators {
            let address = Address::try_from(private_key).unwrap();
            committee_map.insert(address, (*amount, true, 0));
        }

        // Attempt to construct a `Committee` with more than the maximum committee size.
        let result = Committee::new_genesis(committee_map);
        assert!(result.is_err());

        // Reset the validators.
        // Note: We use a smaller committee size to ensure that there is enough supply to allocate to the validators and genesis block transactions.
        let validators =
            sample_validators::<CurrentNetwork>(Committee::<CurrentNetwork>::MAX_COMMITTEE_SIZE as usize, rng);

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) =
            sample_committee_map_and_allocated_amount(&validators, &IndexMap::new());

        // Construct the public balances, allocating the remaining supply.
        let public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &IndexMap::new());

        // Construct the genesis block, which should pass.
        let block = vm
            .genesis_quorum(
                validators.keys().next().unwrap(),
                Committee::new_genesis(committee_map).unwrap(),
                public_balances,
                bonded_balances,
                rng,
            )
            .unwrap();

        // Add the block.
        vm.add_next_block(&block).unwrap();
    }

    // Note that the maximum delegator size is large enough that the ratification ID cannot be computed.
    #[test]
    fn test_ratify_genesis_greater_than_max_delegator_size() {
        // Initialize an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Construct the validators.
        // Note: We use a smaller committee size to ensure that there is enough supply to allocate to the validators and genesis block transactions.
        let validators =
            sample_validators::<CurrentNetwork>(Committee::<CurrentNetwork>::MAX_COMMITTEE_SIZE as usize / 4, rng);

        // Construct the delegators, greater than the maximum delegator size.
        let delegators = (0..MAX_DELEGATORS + 1)
            .map(|_| {
                let private_key = PrivateKey::<CurrentNetwork>::new(rng).unwrap();
                let validator = Address::try_from(validators.keys().next().unwrap()).unwrap();
                let amount = MIN_DELEGATOR_STAKE;
                (private_key, (validator, amount))
            })
            .collect::<IndexMap<_, _>>();

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) = sample_committee_map_and_allocated_amount(&validators, &delegators);

        // Construct the public balances, allocating the remaining supply to the validators and zero to the delegators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances.extend(sample_public_balances(
            &delegators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            0,
        ));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &delegators);

        // Construct the genesis block, which should fail.
        let result = vm.genesis_quorum(
            validators.keys().next().unwrap(),
            Committee::new_genesis(committee_map).unwrap(),
            public_balances,
            bonded_balances,
            rng,
        );
        assert!(result.is_err());
    }

    #[test]
    fn test_ratify_genesis_is_correct() {
        const NUM_VALIDATORS: usize = 5;
        const NUM_DELEGATORS: usize = 8;

        // Sample an RNG.
        let rng = &mut TestRng::default();

        println!("Initializing VMs.");

        // Initialize the VM.
        let vm = sample_vm();

        println!("Constructing validator and delegator sets.");

        // Sample the validators.
        let validators = sample_validators(NUM_VALIDATORS, rng);

        // Sample the delegators, cycling through the validators.
        let delegators: IndexMap<_, _> = (0..NUM_DELEGATORS)
            .map(|i| {
                let private_key = PrivateKey::new(rng).unwrap();
                let validator = Address::try_from(validators.keys().nth(i % NUM_VALIDATORS).unwrap()).unwrap();
                let amount = MIN_DELEGATOR_STAKE;
                (private_key, (validator, amount))
            })
            .collect();

        // Sample a genesis block without any delegators.
        // Specifically, the genesis block will contain a `Ratification` with:
        //   - the committee state, containing only the validator amounts.
        //   - the public balances for the delegators, with 10_000_000u64 microcredits each (plus 843_880u64 microcredits for fees).
        //   - the public balances for the validators dividing up the remaining starting supply.
        //   - the bonded balances, only containing the validators.

        println!("Initializing the VM.");

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) = sample_committee_map_and_allocated_amount(&validators, &delegators);
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to the validators and zero to the delegators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances.extend(sample_public_balances(
            &delegators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            0,
        ));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &delegators);

        println!("Generating the genesis block.");

        let genesis = vm
            .genesis_quorum(
                validators.keys().next().unwrap(),
                committee.clone(),
                public_balances.clone(),
                bonded_balances.clone(),
                rng,
            )
            .unwrap();

        println!("Adding the genesis block to the VM.");

        // Add the genesis block to the VM.
        vm.add_next_block(&genesis).unwrap();

        // Check that the state of the `credits.aleo` program is correct.
        let program_id = ProgramID::from_str("credits.aleo").unwrap();
        let committee_mapping_name = Identifier::from_str("committee").unwrap();
        let account_mapping_name = Identifier::from_str("account").unwrap();
        let bonded_mapping_name = Identifier::from_str("bonded").unwrap();
        let metadata_mapping_name = Identifier::from_str("metadata").unwrap();
        let unbonding_mapping_name = Identifier::from_str("unbonding").unwrap();
        let withdraw_mapping_name = Identifier::from_str("withdraw").unwrap();

        // Get and check the committee mapping.
        let actual_committee = vm.finalize_store().get_mapping_confirmed(program_id, committee_mapping_name).unwrap();
        let expected_committee = committee
            .members()
            .iter()
            .map(|(address, (_, is_open, commission))| {
                (
                    Plaintext::from_str(&address.to_string()).unwrap(),
                    Value::from_str(&format!("{{ is_open: {is_open}, commission: {commission}u8 }}")).unwrap(),
                )
            })
            .collect_vec();
        // Note that `actual_committee` and `expected_committee` are vectors and not necessarily in the same order.
        // By checking that the lengths of the vector are equal and that all entries in `actual_committee` are in `expected_committee`,
        // we can ensure that the two vectors contain the same data.
        assert_eq!(actual_committee.len(), expected_committee.len());
        for entry in actual_committee.iter() {
            assert!(expected_committee.contains(entry));
        }

        // Get and check the account mapping.
        let actual_account = vm.finalize_store().get_mapping_confirmed(program_id, account_mapping_name).unwrap();
        let expected_account = public_balances
            .iter()
            .map(|(address, amount)| {
                (Plaintext::from_str(&address.to_string()).unwrap(), Value::from_str(&format!("{amount}u64")).unwrap())
            })
            .collect_vec();
        // Note that `actual_account` and `expected_account` are vectors and not necessarily in the same order.
        // By checking that the lengths of the vector are equal and that all entries in `actual_account` are in `expected_account`,
        // we can ensure that the two vectors contain the same data.
        assert_eq!(actual_account.len(), expected_account.len());
        // Check that all entries except for the first validator are the same.
        for entry in actual_account.iter() {
            let first_validator = Address::try_from(validators.keys().next().unwrap()).unwrap();
            // Note that the first validator is used to execute additional transactions in `VM::genesis_quorum`.
            // Therefore, the balance of the first validator will be different from the expected balance.
            if entry.0 == Plaintext::from_str(&first_validator.to_string()).unwrap() {
                assert_eq!(entry.1, Value::from_str("144991999894244u64").unwrap());
            } else {
                assert!(expected_account.contains(entry));
            }
        }

        // Get and check the bonded mapping.
        let actual_bonded = vm.finalize_store().get_mapping_confirmed(program_id, bonded_mapping_name).unwrap();
        let expected_bonded = bonded_balances
            .iter()
            .map(|(address, (validator, _, amount))| {
                (
                    Plaintext::from_str(&address.to_string()).unwrap(),
                    Value::from_str(&format!("{{ validator: {validator}, microcredits: {amount}u64 }}")).unwrap(),
                )
            })
            .collect_vec();
        // Note that `actual_bonded` and `expected_bonded` are vectors and not necessarily in the same order.
        // By checking that the lengths of the vector are equal and that all entries in `actual_bonded` are in `expected_bonded`,
        // we can ensure that the two vectors contain the same data.
        assert_eq!(actual_bonded.len(), expected_bonded.len());
        for entry in actual_bonded.iter() {
            assert!(expected_bonded.contains(entry));
        }

        // Get and check the withdraw mapping.
        let actual_withdraw = vm.finalize_store().get_mapping_confirmed(program_id, withdraw_mapping_name).unwrap();
        let expected_withdraw = bonded_balances
            .iter()
            .map(|(address, (_, withdrawal_address, _))| {
                (
                    Plaintext::from_str(&address.to_string()).unwrap(),
                    Value::from_str(&withdrawal_address.to_string()).unwrap(),
                )
            })
            .collect_vec();
        // Note that `actual_withdraw` and `expected_withdraw` are vectors and not necessarily in the same order.
        // By checking that the lengths of the vector are equal and that all entries in `actual_withdraw` are in `expected_withdraw`,
        // we can ensure that the two vectors contain the same data.
        assert_eq!(actual_withdraw.len(), expected_withdraw.len());
        for entry in actual_withdraw.iter() {
            assert!(expected_withdraw.contains(entry));
        }

        // Get and check the entry in metadata mapping corresponding to the number of validators.
        let num_validators = vm
            .finalize_store()
            .get_value_confirmed(
                program_id,
                metadata_mapping_name,
                &Plaintext::from_str("aleo1qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq3ljyzc").unwrap(),
            )
            .unwrap()
            .unwrap();
        assert_eq!(num_validators, Value::from_str(&format!("{NUM_VALIDATORS}u32")).unwrap());

        // Get and check the entry in metadata mapping corresponding to the number of delegators.
        let num_delegators = vm
            .finalize_store()
            .get_value_confirmed(
                program_id,
                metadata_mapping_name,
                &Plaintext::from_str("aleo1qgqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqanmpl0").unwrap(),
            )
            .unwrap()
            .unwrap();
        assert_eq!(num_delegators, Value::from_str(&format!("{NUM_DELEGATORS}u32")).unwrap());

        // Get and check the unbonding mapping.
        let actual_unbonding = vm.finalize_store().get_mapping_confirmed(program_id, unbonding_mapping_name).unwrap();
        assert!(actual_unbonding.is_empty());
    }

    #[test]
    fn test_ratify_genesis_is_consistent() {
        const NUM_VALIDATORS: usize = 5;
        const NUM_DELEGATORS: usize = 8;

        // Sample an RNG.
        let rng = &mut TestRng::default();

        println!("Initializing VMs.");

        // Initialize two VMs.
        let vm_1 = sample_vm();
        let vm_2 = sample_vm();

        println!("Constructing validator and delegator sets.");

        // Sample the validators.
        let validators = sample_validators(NUM_VALIDATORS, rng);

        // Sample the delegators, cycling through the validators.
        let delegators: IndexMap<_, _> = (0..NUM_DELEGATORS)
            .map(|i| {
                let private_key = PrivateKey::new(rng).unwrap();
                let validator = Address::try_from(validators.keys().nth(i % NUM_VALIDATORS).unwrap()).unwrap();
                let amount = MIN_DELEGATOR_STAKE;
                (private_key, (validator, amount))
            })
            .collect();

        // For the first VM, sample a genesis block without any delegators.
        // Specifically, the genesis block will contain a `Ratification` with:
        //   - the committee state, containing only the validator amounts.
        //   - the public balances for the delegators, with 10_000_000u64 microcredits each (plus 843_880u64 microcredits for fees).
        //   - the public balances for the validators dividing up the remaining starting supply.
        //   - the bonded balances, only containing the validators.

        println!("Initializing the first VM.");

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, mut allocated_amount) =
            sample_committee_map_and_allocated_amount(&validators, &IndexMap::new());
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances.
        let mut public_balances = IndexMap::new();
        for (private_key, (_validator, _amount)) in &delegators {
            let address = Address::try_from(private_key).unwrap();
            let amount = MIN_DELEGATOR_STAKE * 2;
            public_balances.insert(address, amount);
            allocated_amount += amount;
        }
        public_balances.extend(sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        ));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &IndexMap::new());

        println!("[VM1] Generating the genesis block.");

        let genesis_1 = vm_1
            .genesis_quorum(validators.keys().next().unwrap(), committee, public_balances, bonded_balances, rng)
            .unwrap();

        println!("[VM1] Adding the genesis block to the VM.");

        // Add the genesis block to the VM.
        vm_1.add_next_block(&genesis_1).unwrap();

        println!("[VM1] Generating bond transactions for each of the delegators.");

        // Generate bond transactions for each of the delegators.
        let mut transactions = Vec::new();
        for (private_key, (validator, amount)) in &delegators {
            let transaction = vm_1
                .execute(
                    private_key,
                    ("credits.aleo", "bond_public"),
                    vec![
                        Value::<CurrentNetwork>::from_str(&validator.to_string()).unwrap(),
                        Value::<CurrentNetwork>::from_str(&Address::try_from(private_key).unwrap().to_string())
                            .unwrap(),
                        Value::<CurrentNetwork>::from_str(&format!("{amount}u64")).unwrap(),
                    ]
                    .into_iter(),
                    None,
                    0,
                    None,
                    rng,
                )
                .unwrap();
            transactions.push(transaction);
        }

        println!("[VM1] Generating the next block.");
        let next_block =
            sample_next_block(&vm_1, validators.keys().next().unwrap(), &transactions, &genesis_1, &mut vec![], rng)
                .unwrap();

        println!("[VM1] Adding the next block to the VM.");
        vm_1.add_next_block(&next_block).unwrap();

        // For the second VM, sample a genesis block with the same validators and delegators.
        // Specifically, the genesis block will contain a `Ratification` with:
        //   - the committee state, containing the total staked amount per validator.
        //   - the public balances for the delegators, with 0 microcredits each.
        //   - the public balances for the validators dividing up the remaining starting supply.
        //   - the bonded balances, containing the validators and delegators.

        println!("Initializing the second VM.");

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) = sample_committee_map_and_allocated_amount(&validators, &delegators);
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to the validators and zero to the delegators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances.extend(sample_public_balances(
            &delegators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            0,
        ));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &delegators);

        println!("[VM2] Generating the genesis block.");

        // Construct the genesis block.
        let genesis_2 = vm_2
            .genesis_quorum(validators.keys().next().unwrap(), committee, public_balances, bonded_balances, rng)
            .unwrap();

        println!("[VM2] Adding the genesis block to the VM.");

        // Add the genesis block to the VM.
        vm_2.add_next_block(&genesis_2).unwrap();

        println!("Checking that all mappings in `credits.aleo` are equal across the two VMs.");

        // Check that all mappings in `credits.aleo` are equal across the two VMs.
        let program_id = ProgramID::from_str("credits.aleo").unwrap();
        let committee_mapping_name = Identifier::from_str("committee").unwrap();
        let bonded_mapping_name = Identifier::from_str("bonded").unwrap();
        let unbonding_mapping_name = Identifier::from_str("unbonding").unwrap();
        let account_mapping_name = Identifier::from_str("account").unwrap();
        let metadata_mapping_name = Identifier::from_str("metadata").unwrap();
        let withdraw_mapping_name = Identifier::from_str("withdraw").unwrap();

        let committee_1 = vm_1.finalize_store().get_mapping_confirmed(program_id, committee_mapping_name).unwrap();
        let committee_2 = vm_2.finalize_store().get_mapping_confirmed(program_id, committee_mapping_name).unwrap();
        assert_eq!(committee_1, committee_2);

        let bonded_1 = vm_1.finalize_store().get_mapping_confirmed(program_id, bonded_mapping_name).unwrap();
        let bonded_2 = vm_2.finalize_store().get_mapping_confirmed(program_id, bonded_mapping_name).unwrap();
        assert_eq!(bonded_1, bonded_2);

        let unbonding_1 = vm_1.finalize_store().get_mapping_confirmed(program_id, unbonding_mapping_name).unwrap();
        let unbonding_2 = vm_2.finalize_store().get_mapping_confirmed(program_id, unbonding_mapping_name).unwrap();
        assert_eq!(unbonding_1, unbonding_2);

        // Check that the account mapping across both VMs have the same keys.
        let account_1 = vm_1
            .finalize_store()
            .get_mapping_confirmed(program_id, account_mapping_name)
            .unwrap()
            .into_iter()
            .map(|(k, _)| k.to_string())
            .collect::<std::collections::HashSet<_>>();
        let account_2 = vm_2
            .finalize_store()
            .get_mapping_confirmed(program_id, account_mapping_name)
            .unwrap()
            .into_iter()
            .map(|(k, _)| k.to_string())
            .collect::<std::collections::HashSet<_>>();
        assert_eq!(account_1, account_2);

        // Check that the metadata mapping across both VMs are equal.
        let metadata_1 = vm_1.finalize_store().get_mapping_confirmed(program_id, metadata_mapping_name).unwrap();
        let metadata_2 = vm_2.finalize_store().get_mapping_confirmed(program_id, metadata_mapping_name).unwrap();
        assert_eq!(metadata_1, metadata_2);

        // Check that the withdraw mapping across both VMs are equal.
        let withdraw_1 = vm_1.finalize_store().get_mapping_confirmed(program_id, withdraw_mapping_name).unwrap();
        let withdraw_2 = vm_2.finalize_store().get_mapping_confirmed(program_id, withdraw_mapping_name).unwrap();
        assert_eq!(withdraw_1, withdraw_2);
    }

    #[test]
    fn test_ratify_genesis_with_insufficient_validator_balance() {
        // Sample an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Attempt to construct a genesis quorum, with a validator with an insufficient amount.
        let mut validators = (0..3)
            .map(|_| {
                let private_key = PrivateKey::<CurrentNetwork>::new(rng).unwrap();
                let address = Address::try_from(&private_key).unwrap();
                let amount = MIN_VALIDATOR_STAKE;
                let is_open = true;
                let commission = 0u8;
                (address, (amount, is_open, commission))
            })
            .collect::<IndexMap<_, _>>();
        validators
            .insert(Address::try_from(PrivateKey::new(rng).unwrap()).unwrap(), (MIN_VALIDATOR_STAKE - 1, true, 0));

        // Construct the committee.
        let result = Committee::new_genesis(validators);
        assert!(result.is_err());

        // Track the allocated amount.
        let mut allocated_amount = 0;

        // Reset the validators.
        let validators = sample_validators(4, rng);

        // Construct the committee.
        let committee = Committee::new_genesis(
            validators
                .iter()
                .map(|(private_key, (amount, _, _))| {
                    let address = Address::try_from(private_key).unwrap();
                    allocated_amount += *amount;
                    (address, (*amount, true, 0u8))
                })
                .collect(),
        )
        .unwrap();

        // Construct the public balances, allocating the remaining supply to rest of the validators.
        let public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &IndexMap::new());

        // Construct the genesis block, which should pass.
        let block = vm
            .genesis_quorum(validators.keys().next().unwrap(), committee, public_balances, bonded_balances, rng)
            .unwrap();

        // Add the block.
        vm.add_next_block(&block).unwrap();
    }

    #[test]
    fn test_ratify_genesis_with_insufficient_delegator_balance() {
        // Sample an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Track the allocated amount.
        let mut allocated_amount = 0;

        // Sample the validators.
        let validators = sample_validators(4, rng);

        // Attempt to construct a genesis quorum, with a delegator with an insufficient amount.
        let mut delegators = IndexMap::new();
        delegators.insert(
            PrivateKey::new(rng).unwrap(),
            (Address::try_from(validators.keys().next().unwrap()).unwrap(), MIN_DELEGATOR_STAKE - 1),
        );

        // Construct the committee.
        let mut committee_map = IndexMap::new();
        for (private_key, (amount, _, _)) in &validators {
            let address = Address::try_from(private_key).unwrap();
            let amount = if address == Address::try_from(validators.keys().next().unwrap()).unwrap() {
                *amount + MIN_DELEGATOR_STAKE - 1
            } else {
                *amount
            };
            committee_map.insert(address, (amount, true, 0u8));
            allocated_amount += amount;
        }
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to rest of the validators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances
            .extend(sample_public_balances(&[Address::try_from(delegators.keys().next().unwrap()).unwrap()], 0));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &delegators);

        // Construct the genesis block, which should fail.
        let result =
            vm.genesis_quorum(validators.keys().next().unwrap(), committee, public_balances, bonded_balances, rng);
        assert!(result.is_err());

        // Reset the delegators.
        let mut delegators = IndexMap::new();
        delegators.insert(
            PrivateKey::new(rng).unwrap(),
            (Address::try_from(validators.keys().next().unwrap()).unwrap(), MIN_DELEGATOR_STAKE),
        );

        // Track the allocated amount.
        let mut allocated_amount = 0;

        // Construct the committee.
        let mut committee_map = IndexMap::new();
        for (private_key, (amount, _, _)) in &validators {
            let address = Address::try_from(private_key).unwrap();
            let amount = if address == Address::try_from(validators.keys().next().unwrap()).unwrap() {
                *amount + MIN_DELEGATOR_STAKE
            } else {
                *amount
            };
            committee_map.insert(address, (amount, true, 0u8));
            allocated_amount += amount;
        }
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to rest of the validators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances
            .extend(sample_public_balances(&[Address::try_from(delegators.keys().next().unwrap()).unwrap()], 0));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &delegators);

        // Construct the genesis block, which should pass.
        let block = vm
            .genesis_quorum(validators.keys().next().unwrap(), committee, public_balances, bonded_balances, rng)
            .unwrap();

        // Add the block.
        vm.add_next_block(&block).unwrap();
    }

    #[test]
    fn test_ratify_genesis_with_incorrect_committee_amounts() {
        // Sample an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Initialize the validators.
        let validators = sample_validators(4, rng);

        // Initialize the delegators.
        let delegators = (0..4)
            .map(|_| {
                let private_key = PrivateKey::new(rng).unwrap();
                let validator = Address::try_from(validators.keys().next().unwrap()).unwrap();
                let amount = MIN_DELEGATOR_STAKE;
                (private_key, (validator, amount))
            })
            .collect::<IndexMap<_, _>>();

        // Construct the **incorrect** committee.
        // Track the allocated amount.
        // Note: this committee is missing the additional stake from the delegators.
        let (committee_map, allocated_amount) =
            sample_committee_map_and_allocated_amount(&validators, &IndexMap::new());
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to rest of the validators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances.extend(sample_public_balances(
            &delegators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            0,
        ));

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &delegators);

        // Construct the genesis block, which should fail.
        let result = vm.genesis_quorum(
            validators.keys().next().unwrap(),
            committee,
            public_balances,
            bonded_balances.clone(),
            rng,
        );
        assert!(result.is_err());

        // Construct the **correct** committee.
        // Reset the tracked amount.
        let (committee_map, allocated_amount) = sample_committee_map_and_allocated_amount(&validators, &delegators);
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to rest of the validators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances.extend(sample_public_balances(
            &delegators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            0,
        ));

        // Construct the genesis block, which should pass.
        let block = vm
            .genesis_quorum(validators.keys().next().unwrap(), committee, public_balances, bonded_balances, rng)
            .unwrap();

        // Add the block.
        vm.add_next_block(&block).unwrap();
    }

    #[test]
    fn test_ratify_genesis_with_closed_validator() {
        // Sample an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Initialize the validators, with one closed.
        let validators = (0..4)
            .map(|i| {
                let private_key = PrivateKey::new(rng).unwrap();
                let amount = MIN_VALIDATOR_STAKE;
                let is_open = i != 0;
                let commission = 0;
                (private_key, (amount, is_open, commission))
            })
            .collect::<IndexMap<_, _>>();

        // Initialize a potential delegator.
        let delegator_key = PrivateKey::new(rng).unwrap();
        let delegator_address = Address::try_from(delegator_key).unwrap();

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) =
            sample_committee_map_and_allocated_amount(&validators, &IndexMap::new());

        // Construct the public balances, allocating half to the first validator and the remaining to the delegator.
        let public_balances = sample_public_balances(
            &[Address::try_from(validators.keys().next().unwrap()).unwrap(), delegator_address],
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );

        // Construct the bonded balances.
        let bonded_balances = sample_bonded_balances(&validators, &IndexMap::new());

        // Construct the genesis block, which should pass.
        let block = vm
            .genesis_quorum(
                validators.keys().next().unwrap(),
                Committee::new_genesis(committee_map).unwrap(),
                public_balances,
                bonded_balances,
                rng,
            )
            .unwrap();

        // Add the block.
        vm.add_next_block(&block).unwrap();

        // Attempt to bond the potential delegator to the closed validator.
        let transaction = vm
            .execute(
                &delegator_key,
                ("credits.aleo", "bond_public"),
                vec![
                    Value::<CurrentNetwork>::from_str(
                        &Address::try_from(validators.keys().next().unwrap()).unwrap().to_string(),
                    )
                    .unwrap(),
                    Value::<CurrentNetwork>::from_str(&Address::try_from(delegator_key).unwrap().to_string()).unwrap(),
                    Value::<CurrentNetwork>::from_str(&format!("{MIN_DELEGATOR_STAKE}u64")).unwrap(),
                ]
                .into_iter(),
                None,
                0,
                None,
                rng,
            )
            .unwrap();

        // Generate the next block.
        let next_block =
            sample_next_block(&vm, validators.keys().next().unwrap(), &vec![transaction], &block, &mut vec![], rng)
                .unwrap();

        // Add the next block.
        vm.add_next_block(&next_block).unwrap();

        // Check that the delegator is not in the `bonded` mapping.
        let bonded_mapping = vm
            .finalize_store()
            .get_mapping_confirmed(
                ProgramID::from_str("credits.aleo").unwrap(),
                Identifier::from_str("bonded").unwrap(),
            )
            .unwrap();
        assert_eq!(bonded_mapping.len(), validators.len());

        // Attempt to bond the potential delegator to the open validator.
        let transaction = vm
            .execute(
                &delegator_key,
                ("credits.aleo", "bond_public"),
                vec![
                    Value::<CurrentNetwork>::from_str(
                        &Address::try_from(validators.keys().nth(1).unwrap()).unwrap().to_string(),
                    )
                    .unwrap(),
                    Value::<CurrentNetwork>::from_str(&Address::try_from(delegator_key).unwrap().to_string()).unwrap(),
                    Value::<CurrentNetwork>::from_str(&format!("{MIN_DELEGATOR_STAKE}u64")).unwrap(),
                ]
                .into_iter(),
                None,
                0,
                None,
                rng,
            )
            .unwrap();

        // Generate the next block.
        let next_block = sample_next_block(
            &vm,
            validators.keys().next().unwrap(),
            &vec![transaction],
            &next_block,
            &mut vec![],
            rng,
        )
        .unwrap();

        // Add the next block.
        vm.add_next_block(&next_block).unwrap();

        // Check that the delegator is in the `bonded` mapping.
        let bonded_mapping = vm
            .finalize_store()
            .get_mapping_confirmed(
                ProgramID::from_str("credits.aleo").unwrap(),
                Identifier::from_str("bonded").unwrap(),
            )
            .unwrap();
        assert_eq!(bonded_mapping.len(), validators.len() + 1);
    }

    #[test]
    fn test_ratify_genesis_withdrawal_address() {
        const NUM_VALIDATORS: usize = 5;
        const NUM_DELEGATORS: usize = 8;

        // Sample an RNG.
        let rng = &mut TestRng::default();

        // Initialize the VM.
        let vm = sample_vm();

        // Sample the validators.
        let validators = sample_validators(NUM_VALIDATORS, rng);

        // Sample the delegators, cycling through the validators.
        let delegators: IndexMap<_, _> = (0..NUM_DELEGATORS)
            .map(|i| {
                let private_key = PrivateKey::new(rng).unwrap();
                let validator = Address::try_from(validators.keys().nth(i % NUM_VALIDATORS).unwrap()).unwrap();
                let amount = MIN_DELEGATOR_STAKE;
                (private_key, (validator, amount))
            })
            .collect();

        // Construct the committee.
        // Track the allocated amount.
        let (committee_map, allocated_amount) = sample_committee_map_and_allocated_amount(&validators, &delegators);
        let committee = Committee::new_genesis(committee_map).unwrap();

        // Construct the public balances, allocating the remaining supply to the validators and zero to the delegators.
        let mut public_balances = sample_public_balances(
            &validators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            <CurrentNetwork as Network>::STARTING_SUPPLY - allocated_amount,
        );
        public_balances.extend(sample_public_balances(
            &delegators.keys().map(|private_key| Address::try_from(private_key).unwrap()).collect::<Vec<_>>(),
            0,
        ));

        // Construct the bonded balances.
        let mut bonded_balances = sample_bonded_balances(&validators, &delegators);

        // Randomly sample and update the withdrawal addresses in the bonded balances.
        for (_, (_, withdrawal_address, _)) in bonded_balances.iter_mut() {
            *withdrawal_address = Address::rand(rng);
        }

        // Construct the genesis block.
        let genesis = vm
            .genesis_quorum(
                validators.keys().next().unwrap(),
                committee.clone(),
                public_balances.clone(),
                bonded_balances.clone(),
                rng,
            )
            .unwrap();

        // Add the genesis block to the VM.
        vm.add_next_block(&genesis).unwrap();

        // Check that the state of the `credits.aleo` program is correct.
        let program_id = ProgramID::from_str("credits.aleo").unwrap();
        let withdraw_mapping_name = Identifier::from_str("withdraw").unwrap();

        // Get and check the withdraw mapping.
        let actual_withdraw = vm.finalize_store().get_mapping_confirmed(program_id, withdraw_mapping_name).unwrap();
        let expected_withdraw = bonded_balances
            .iter()
            .map(|(address, (_, withdrawal_address, _))| {
                (
                    Plaintext::from_str(&address.to_string()).unwrap(),
                    Value::from_str(&withdrawal_address.to_string()).unwrap(),
                )
            })
            .collect_vec();
        // Note that `actual_withdraw` and `expected_withdraw` are vectors and not necessarily in the same order.
        // By checking that the lengths of the vector are equal and that all entries in `actual_withdraw` are in `expected_withdraw`,
        // we can ensure that the two vectors contain the same data.
        assert_eq!(actual_withdraw.len(), expected_withdraw.len());
        for entry in actual_withdraw.iter() {
            assert!(expected_withdraw.contains(entry));
        }
    }
}