1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{boxed::Box, vec::Vec};

pub struct ExecutionPool<'a, T> {
    jobs: Vec<Box<dyn 'a + FnOnce() -> T + Send>>,
}

impl<'a, T> ExecutionPool<'a, T> {
    pub fn new() -> Self {
        Self { jobs: Vec::new() }
    }

    pub fn with_capacity(cap: usize) -> Self {
        Self { jobs: Vec::with_capacity(cap) }
    }

    pub fn add_job<F: 'a + FnOnce() -> T + Send>(&mut self, f: F) {
        self.jobs.push(Box::new(f));
    }

    pub fn execute_all(self) -> Vec<T>
    where
        T: Send + Sync,
    {
        #[cfg(not(feature = "serial"))]
        {
            use rayon::prelude::*;
            execute_with_max_available_threads(|| self.jobs.into_par_iter().map(|f| f()).collect())
        }
        #[cfg(feature = "serial")]
        {
            self.jobs.into_iter().map(|f| f()).collect()
        }
    }
}

impl<'a, T> Default for ExecutionPool<'a, T> {
    fn default() -> Self {
        Self::new()
    }
}

#[cfg(not(feature = "serial"))]
pub fn max_available_threads() -> usize {
    use aleo_std::Cpu;
    let rayon_threads = rayon::current_num_threads();

    match aleo_std::get_cpu() {
        Cpu::Intel => num_cpus::get_physical().min(rayon_threads),
        Cpu::AMD | Cpu::Unknown => rayon_threads,
    }
}

#[inline(always)]
#[cfg(not(feature = "serial"))]
pub fn execute_with_max_available_threads<T: Sync + Send>(f: impl FnOnce() -> T + Send) -> T {
    execute_with_threads(f, max_available_threads())
}

#[inline(always)]
#[cfg(feature = "serial")]
pub fn execute_with_max_available_threads<T>(f: impl FnOnce() -> T + Send) -> T {
    f()
}

#[cfg(not(feature = "serial"))]
#[inline(always)]
fn execute_with_threads<T: Sync + Send>(f: impl FnOnce() -> T + Send, num_threads: usize) -> T {
    let pool = rayon::ThreadPoolBuilder::new().num_threads(num_threads).build().unwrap();
    pool.install(f)
}

/// Creates parallel iterator over refs if `parallel` feature is enabled.
#[macro_export]
macro_rules! cfg_iter {
    ($e: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.par_iter();

        #[cfg(feature = "serial")]
        let result = $e.iter();

        result
    }};
}

/// Creates parallel iterator over mut refs if `parallel` feature is enabled.
#[macro_export]
macro_rules! cfg_iter_mut {
    ($e: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.par_iter_mut();

        #[cfg(feature = "serial")]
        let result = $e.iter_mut();

        result
    }};
}

/// Creates parallel iterator if `parallel` feature is enabled.
#[macro_export]
macro_rules! cfg_into_iter {
    ($e: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.into_par_iter();

        #[cfg(feature = "serial")]
        let result = $e.into_iter();

        result
    }};
}

/// Returns an iterator over `chunk_size` elements of the slice at a
/// time.
#[macro_export]
macro_rules! cfg_chunks {
    ($e: expr, $size: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.par_chunks($size);

        #[cfg(feature = "serial")]
        let result = $e.chunks($size);

        result
    }};
}

/// Returns an iterator over `chunk_size` elements of the slice at a time.
#[macro_export]
macro_rules! cfg_chunks_mut {
    ($e: expr, $size: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.par_chunks_mut($size);

        #[cfg(feature = "serial")]
        let result = $e.chunks_mut($size);

        result
    }};
}

/// Applies the reduce operation over an iterator.
#[macro_export]
macro_rules! cfg_reduce {
    ($e: expr, $default: expr, $op: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.reduce($default, $op);

        #[cfg(feature = "serial")]
        let result = $e.fold($default(), $op);

        result
    }};
}

/// Applies `reduce_with` or `reduce` depending on the `serial` feature.
#[macro_export]
macro_rules! cfg_reduce_with {
    ($e: expr, $op: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.reduce_with($op);

        #[cfg(feature = "serial")]
        let result = $e.reduce($op);

        result
    }};
}

/// Turns a collection into an iterator.
#[macro_export]
macro_rules! cfg_values {
    ($e: expr) => {{
        #[cfg(not(feature = "serial"))]
        let result = $e.par_values();

        #[cfg(feature = "serial")]
        let result = $e.values();

        result
    }};
}

/// Finds the first element that satisfies the predicate function
#[macro_export]
macro_rules! cfg_find {
    ($self:expr, $object:expr, $func:ident) => {{
        #[cfg(not(feature = "serial"))]
        let result = $self.par_values().find_any(|tx| tx.$func($object));

        #[cfg(feature = "serial")]
        let result = $self.values().find(|tx| tx.$func($object));

        result
    }};
}

/// Applies a function and returns the first value that is not None
#[macro_export]
macro_rules! cfg_find_map {
    ($self:expr, $object:expr, $func:ident) => {{
        #[cfg(not(feature = "serial"))]
        let result = $self.par_values().filter_map(|tx| tx.$func($object)).find_any(|_| true);

        #[cfg(feature = "serial")]
        let result = $self.values().find_map(|tx| tx.$func($object));

        result
    }};
}

/// Applies fold to the iterator
#[macro_export]
macro_rules! cfg_zip_fold {
    ($self: expr, $other: expr, $init: expr, $op: expr, $type: ty) => {{
        let default = $init;

        #[cfg(feature = "serial")]
        let default = $init();
        let result = $self.zip_eq($other).fold(default, $op);

        #[cfg(not(feature = "serial"))]
        let result = result.sum::<$type>();

        result
    }};
}