snarkvm_utilities/
bits.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use crate::Vec;

use anyhow::{Result, ensure};

/// Takes as input a sequence of objects, and converts them to a series of little-endian bits.
/// All traits that implement `ToBits` can be automatically converted to bits in this manner.
#[macro_export]
macro_rules! to_bits_le {
    ($($x:expr),*) => ({
        let mut buffer = $crate::vec![];
        $($x.write_bits_le(&mut buffer);)*
        buffer
    });
    ($($x:expr),*; $size:expr) => ({
        let mut buffer = $crate::Vec::with_capacity($size);
        $($x.write_bits_le(&mut buffer);)*
        buffer
    });
}

pub trait ToBits: Sized {
    /// Writes `self` into the given vector as a boolean array in little-endian order.
    fn write_bits_le(&self, vec: &mut Vec<bool>);

    /// Writes `self` into the given vector as a boolean array in big-endian order.
    fn write_bits_be(&self, vec: &mut Vec<bool>);

    /// Returns `self` as a boolean array in little-endian order.
    fn to_bits_le(&self) -> Vec<bool> {
        let mut bits = Vec::new();
        self.write_bits_le(&mut bits);
        bits
    }

    /// Returns `self` as a boolean array in big-endian order.
    fn to_bits_be(&self) -> Vec<bool> {
        let mut bits = Vec::new();
        self.write_bits_be(&mut bits);
        bits
    }

    /// An optional indication of how many bits an object can be represented with.
    fn num_bits() -> Option<usize> {
        None
    }
}

pub trait FromBits: Sized {
    /// Reads `Self` from a boolean array in little-endian order.
    fn from_bits_le(bits: &[bool]) -> Result<Self>;

    /// Reads `Self` from a boolean array in big-endian order.
    fn from_bits_be(bits: &[bool]) -> Result<Self>;
}

/********************/
/****** Tuples ******/
/********************/

/// A helper macro to implement `ToBits` for a tuple of `ToBits` circuits.
macro_rules! to_bits_tuple {
    (($t0:ident, $i0:tt), $(($ty:ident, $idx:tt)),+) => {
        impl<$t0: ToBits, $($ty: ToBits),+> ToBits for ($t0, $($ty),+) {
            /// A helper method to return a concatenated list of little-endian bits from the circuits.
            #[inline]
            fn write_bits_le(&self, vec: &mut Vec<bool>) {
                // The tuple is order-preserving, meaning the first circuit in is the first circuit bits out.
                (&self).write_bits_le(vec);
            }

            /// A helper method to return a concatenated list of big-endian bits from the circuits.
            #[inline]
            fn write_bits_be(&self, vec: &mut Vec<bool>) {
                // The tuple is order-preserving, meaning the first circuit in is the first circuit bits out.
                (&self).write_bits_be(vec);
            }
        }

        impl<'a, $t0: ToBits, $($ty: ToBits),+> ToBits for &'a ($t0, $($ty),+) {
            /// A helper method to return a concatenated list of little-endian bits from the circuits.
            #[inline]
            fn write_bits_le(&self, vec: &mut Vec<bool>) {
                // The tuple is order-preserving, meaning the first circuit in is the first circuit bits out.
                self.$i0.write_bits_le(vec);
                $(self.$idx.write_bits_le(vec);)+
            }

            /// A helper method to return a concatenated list of big-endian bits from the circuits.
            #[inline]
            fn write_bits_be(&self, vec: &mut Vec<bool>) {
                // The tuple is order-preserving, meaning the first circuit in is the first circuit bits out.
                self.$i0.write_bits_be(vec);
                $(self.$idx.write_bits_be(vec);)+
            }
        }
    }
}

to_bits_tuple!((C0, 0), (C1, 1));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9));
to_bits_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10));

/********************/
/****** Boolean *****/
/********************/

impl ToBits for bool {
    /// A helper method to return a concatenated list of little-endian bits.
    #[inline]
    fn write_bits_le(&self, vec: &mut Vec<bool>) {
        vec.push(*self);
    }

    /// A helper method to return a concatenated list of big-endian bits.
    #[inline]
    fn write_bits_be(&self, vec: &mut Vec<bool>) {
        vec.push(*self);
    }
}

/********************/
/***** Integers *****/
/********************/

macro_rules! impl_bits_for_integer {
    ($int:ty) => {
        impl ToBits for $int {
            /// Returns `self` as a boolean array in little-endian order.
            #[inline]
            fn write_bits_le(&self, vec: &mut Vec<bool>) {
                let mut value = *self;
                for _ in 0..<$int>::BITS {
                    vec.push(value & 1 == 1);
                    value = value.wrapping_shr(1u32);
                }
            }

            /// Returns `self` as a boolean array in big-endian order.
            #[inline]
            fn write_bits_be(&self, vec: &mut Vec<bool>) {
                let reversed = self.reverse_bits();
                reversed.write_bits_le(vec);
            }

            fn num_bits() -> Option<usize> {
                Some(<$int>::BITS as usize)
            }
        }

        impl FromBits for $int {
            /// Reads `Self` from a boolean array in little-endian order.
            #[inline]
            fn from_bits_le(bits: &[bool]) -> Result<Self> {
                // If the number of bits exceeds the size of the integer, ensure that the upper bits are all zero.
                // Note that because the input bits are little-endian, these are the bits at the end of slice.
                for bit in bits.iter().skip(<$int>::BITS as usize) {
                    ensure!(!bit, "upper bits are not zero");
                }
                // Construct the integer from the bits.
                Ok(bits.iter().take(<$int>::BITS as usize).rev().fold(0, |value, bit| match bit {
                    true => (value.wrapping_shl(1)) ^ 1,
                    false => (value.wrapping_shl(1)) ^ 0,
                }))
            }

            /// Reads `Self` from a boolean array in big-endian order.
            #[inline]
            fn from_bits_be(bits: &[bool]) -> Result<Self> {
                // If the number of bits exceeds the size of the integer, ensure that the upper bits are all zero.
                // Note that because the input bits are big-endian, these are the bits at the beginning of slice.
                for bit in bits.iter().take(bits.len().saturating_sub(<$int>::BITS as usize)) {
                    ensure!(!bit, "upper bits are not zero");
                }
                // Construct the integer from the bits.
                Ok(bits.iter().skip(bits.len().saturating_sub(<$int>::BITS as usize)).fold(0, |value, bit| match bit {
                    true => (value.wrapping_shl(1)) ^ 1,
                    false => (value.wrapping_shl(1)) ^ 0,
                }))
            }
        }
    };
}

impl_bits_for_integer!(u8);
impl_bits_for_integer!(u16);
impl_bits_for_integer!(u32);
impl_bits_for_integer!(u64);
impl_bits_for_integer!(u128);

impl_bits_for_integer!(i8);
impl_bits_for_integer!(i16);
impl_bits_for_integer!(i32);
impl_bits_for_integer!(i64);
impl_bits_for_integer!(i128);

/********************/
/****** String ******/
/********************/

impl ToBits for String {
    /// A helper method to return a concatenated list of little-endian bits.
    #[inline]
    fn write_bits_le(&self, vec: &mut Vec<bool>) {
        // The vector is order-preserving, meaning the first byte in is the first byte bits out.
        self.as_bytes().write_bits_le(vec);
    }

    /// A helper method to return a concatenated list of big-endian bits.
    #[inline]
    fn write_bits_be(&self, vec: &mut Vec<bool>) {
        // The vector is order-preserving, meaning the first byte in is the first byte bits out.
        self.as_bytes().write_bits_be(vec);
    }
}

/********************/
/****** Arrays ******/
/********************/

impl<C: ToBits> ToBits for Vec<C> {
    /// A helper method to return a concatenated list of little-endian bits.
    #[inline]
    fn write_bits_le(&self, vec: &mut Vec<bool>) {
        // The vector is order-preserving, meaning the first variable in is the first variable bits out.
        self.as_slice().write_bits_le(vec);
    }

    /// A helper method to return a concatenated list of big-endian bits.
    #[inline]
    fn write_bits_be(&self, vec: &mut Vec<bool>) {
        // The vector is order-preserving, meaning the first variable in is the first variable bits out.
        self.as_slice().write_bits_be(vec);
    }
}

impl<C: ToBits, const N: usize> ToBits for [C; N] {
    /// A helper method to return a concatenated list of little-endian bits.
    #[inline]
    fn write_bits_le(&self, vec: &mut Vec<bool>) {
        // The slice is order-preserving, meaning the first variable in is the first variable bits out.
        self.as_slice().write_bits_le(vec)
    }

    /// A helper method to return a concatenated list of big-endian bits.
    #[inline]
    fn write_bits_be(&self, vec: &mut Vec<bool>) {
        // The slice is order-preserving, meaning the first variable in is the first variable bits out.
        self.as_slice().write_bits_be(vec)
    }
}

impl<C: ToBits> ToBits for &[C] {
    /// A helper method to return a concatenated list of little-endian bits.
    #[inline]
    fn write_bits_le(&self, vec: &mut Vec<bool>) {
        if let Some(num_bits) = C::num_bits() {
            vec.reserve(num_bits * self.len());
        }

        for elem in self.iter() {
            elem.write_bits_le(vec);
        }
    }

    /// A helper method to return a concatenated list of big-endian bits.
    #[inline]
    fn write_bits_be(&self, vec: &mut Vec<bool>) {
        if let Some(num_bits) = C::num_bits() {
            vec.reserve(num_bits * self.len());
        }

        for elem in self.iter() {
            elem.write_bits_be(vec);
        }
    }
}

impl FromBits for Vec<u8> {
    /// A helper method to return `Self` from a concatenated list of little-endian bits.
    #[inline]
    fn from_bits_le(bits: &[bool]) -> Result<Self> {
        // The vector is order-preserving, meaning the first variable in is the first variable bits out.
        bits.chunks(8).map(u8::from_bits_le).collect::<Result<Vec<_>>>()
    }

    /// A helper method to return `Self` from a concatenated list of big-endian bits.
    #[inline]
    fn from_bits_be(bits: &[bool]) -> Result<Self> {
        // The vector is order-preserving, meaning the first variable in is the first variable bits out.
        bits.chunks(8).map(u8::from_bits_be).collect::<Result<Vec<_>>>()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::{TestRng, Uniform};

    use anyhow::Result;
    use rand::{Rng, distributions::Alphanumeric};

    const ITERATIONS: u64 = 10000;

    fn random_string(len: u16, rng: &mut TestRng) -> String {
        rng.sample_iter(&Alphanumeric).take(len as usize).map(char::from).collect()
    }

    #[test]
    fn test_to_bits_le_macro() {
        let rng = &mut TestRng::default();

        // The checker.
        macro_rules! check {
            ($given:expr) => {{
                let given = $given;

                let mut expected = Vec::new();
                given.iter().for_each(|elem| elem.write_bits_le(&mut expected));

                let candidate = to_bits_le!(given);
                assert_eq!(candidate, expected);
            }};
        }

        // U8
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<u8>>());
        // U16
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<u16>>());
        // U32
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<u32>>());
        // U64
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<u64>>());
        // U128
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<u128>>());
        // I8
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<i8>>());
        // I16
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<i16>>());
        // I32
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<i32>>());
        // I64
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<i64>>());
        // I128
        check!((0..100).map(|_| Uniform::rand(rng)).collect::<Vec<i128>>());
        // String
        check!((0..100).map(|_| random_string(rng.gen(), rng)).collect::<Vec<String>>());
        // Vec<Vec<u8>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<u8>>()).collect::<Vec<_>>());
        // Vec<Vec<u16>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<u16>>()).collect::<Vec<_>>());
        // Vec<Vec<u32>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<u32>>()).collect::<Vec<_>>());
        // Vec<Vec<u64>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<u64>>()).collect::<Vec<_>>());
        // Vec<Vec<u128>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<u128>>()).collect::<Vec<_>>());
        // Vec<Vec<i8>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<i8>>()).collect::<Vec<_>>());
        // Vec<Vec<i16>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<i16>>()).collect::<Vec<_>>());
        // Vec<Vec<i32>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<i32>>()).collect::<Vec<_>>());
        // Vec<Vec<i64>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<i64>>()).collect::<Vec<_>>());
        // Vec<Vec<i128>>
        check!((0..100).map(|_| (0..128).map(|_| Uniform::rand(rng)).collect::<Vec<i128>>()).collect::<Vec<_>>());
        // Vec<Vec<String>>
        check!(
            (0..100)
                .map(|_| (0..128).map(|_| random_string(rng.gen(), rng)).collect::<Vec<String>>())
                .collect::<Vec<_>>()
        );
    }

    #[test]
    fn test_to_bits_le_macro_with_capacity() {
        let mut expected = Vec::new();
        1u8.write_bits_le(&mut expected);
        2u16.write_bits_le(&mut expected);
        3u32.write_bits_le(&mut expected);
        4u64.write_bits_le(&mut expected);
        5u128.write_bits_le(&mut expected);
        6i8.write_bits_le(&mut expected);
        7i16.write_bits_le(&mut expected);
        8i32.write_bits_le(&mut expected);
        9i64.write_bits_le(&mut expected);
        10i128.write_bits_le(&mut expected);

        let capacity = expected.len();

        let candidate = to_bits_le![1u8, 2u16, 3u32, 4u64, 5u128, 6i8, 7i16, 8i32, 9i64, 10i128; capacity];
        assert_eq!(candidate, expected);
    }

    #[test]
    fn test_integers() -> Result<()> {
        macro_rules! check_integer {
            ($integer:tt, $rng:expr) => {{
                for _ in 0..ITERATIONS {
                    let expected: $integer = Uniform::rand($rng);

                    let bits_le = expected.to_bits_le();
                    assert_eq!(expected, $integer::from_bits_le(&bits_le)?);

                    let bits_be = expected.to_bits_be();
                    assert_eq!(expected, $integer::from_bits_be(&bits_be)?);
                }
            }};
        }

        let mut rng = TestRng::default();

        check_integer!(u8, &mut rng);
        check_integer!(u16, &mut rng);
        check_integer!(u32, &mut rng);
        check_integer!(u64, &mut rng);
        check_integer!(u128, &mut rng);

        check_integer!(i8, &mut rng);
        check_integer!(i16, &mut rng);
        check_integer!(i32, &mut rng);
        check_integer!(i64, &mut rng);
        check_integer!(i128, &mut rng);

        Ok(())
    }
}