use crate::std::{vec, Vec};
const HASH384_H0: u64 = 0xcbbb9d5dc1059ed8;
const HASH384_H1: u64 = 0x629a292a367cd507;
const HASH384_H2: u64 = 0x9159015a3070dd17;
const HASH384_H3: u64 = 0x152fecd8f70e5939;
const HASH384_H4: u64 = 0x67332667ffc00b31;
const HASH384_H5: u64 = 0x8eb44a8768581511;
const HASH384_H6: u64 = 0xdb0c2e0d64f98fa7;
const HASH384_H7: u64 = 0x47b5481dbefa4fa4;
const HASH384_K: [u64; 80] = [
0x428a2f98d728ae22,
0x7137449123ef65cd,
0xb5c0fbcfec4d3b2f,
0xe9b5dba58189dbbc,
0x3956c25bf348b538,
0x59f111f1b605d019,
0x923f82a4af194f9b,
0xab1c5ed5da6d8118,
0xd807aa98a3030242,
0x12835b0145706fbe,
0x243185be4ee4b28c,
0x550c7dc3d5ffb4e2,
0x72be5d74f27b896f,
0x80deb1fe3b1696b1,
0x9bdc06a725c71235,
0xc19bf174cf692694,
0xe49b69c19ef14ad2,
0xefbe4786384f25e3,
0x0fc19dc68b8cd5b5,
0x240ca1cc77ac9c65,
0x2de92c6f592b0275,
0x4a7484aa6ea6e483,
0x5cb0a9dcbd41fbd4,
0x76f988da831153b5,
0x983e5152ee66dfab,
0xa831c66d2db43210,
0xb00327c898fb213f,
0xbf597fc7beef0ee4,
0xc6e00bf33da88fc2,
0xd5a79147930aa725,
0x06ca6351e003826f,
0x142929670a0e6e70,
0x27b70a8546d22ffc,
0x2e1b21385c26c926,
0x4d2c6dfc5ac42aed,
0x53380d139d95b3df,
0x650a73548baf63de,
0x766a0abb3c77b2a8,
0x81c2c92e47edaee6,
0x92722c851482353b,
0xa2bfe8a14cf10364,
0xa81a664bbc423001,
0xc24b8b70d0f89791,
0xc76c51a30654be30,
0xd192e819d6ef5218,
0xd69906245565a910,
0xf40e35855771202a,
0x106aa07032bbd1b8,
0x19a4c116b8d2d0c8,
0x1e376c085141ab53,
0x2748774cdf8eeb99,
0x34b0bcb5e19b48a8,
0x391c0cb3c5c95a63,
0x4ed8aa4ae3418acb,
0x5b9cca4f7763e373,
0x682e6ff3d6b2b8a3,
0x748f82ee5defb2fc,
0x78a5636f43172f60,
0x84c87814a1f0ab72,
0x8cc702081a6439ec,
0x90befffa23631e28,
0xa4506cebde82bde9,
0xbef9a3f7b2c67915,
0xc67178f2e372532b,
0xca273eceea26619c,
0xd186b8c721c0c207,
0xeada7dd6cde0eb1e,
0xf57d4f7fee6ed178,
0x06f067aa72176fba,
0x0a637dc5a2c898a6,
0x113f9804bef90dae,
0x1b710b35131c471b,
0x28db77f523047d84,
0x32caab7b40c72493,
0x3c9ebe0a15c9bebc,
0x431d67c49c100d4c,
0x4cc5d4becb3e42b6,
0x597f299cfc657e2a,
0x5fcb6fab3ad6faec,
0x6c44198c4a475817,
];
pub const BLOCK_SIZE: usize = 128;
pub const HASH_BYTES: usize = 48;
const IPAD_BYTE: u8 = 0x36;
const OPAD_BYTE: u8 = 0x5c;
pub struct HASH384 {
length: [u64; 2],
h: [u64; 8],
w: [u64; 80],
}
impl HASH384 {
fn s(n: u64, x: u64) -> u64 {
return ((x) >> n) | ((x) << (64 - n));
}
fn r(n: u64, x: u64) -> u64 {
return (x) >> n;
}
fn ch(x: u64, y: u64, z: u64) -> u64 {
return (x & y) ^ (!(x) & z);
}
fn maj(x: u64, y: u64, z: u64) -> u64 {
return (x & y) ^ (x & z) ^ (y & z);
}
fn sig0(x: u64) -> u64 {
return Self::s(28, x) ^ Self::s(34, x) ^ Self::s(39, x);
}
fn sig1(x: u64) -> u64 {
return Self::s(14, x) ^ Self::s(18, x) ^ Self::s(41, x);
}
fn theta0(x: u64) -> u64 {
return Self::s(1, x) ^ Self::s(8, x) ^ Self::r(7, x);
}
fn theta1(x: u64) -> u64 {
return Self::s(19, x) ^ Self::s(61, x) ^ Self::r(6, x);
}
fn transform(&mut self) {
for j in 16..80 {
self.w[j] = Self::theta1(self.w[j - 2])
.wrapping_add(self.w[j - 7])
.wrapping_add(Self::theta0(self.w[j - 15]))
.wrapping_add(self.w[j - 16]);
}
let mut a = self.h[0];
let mut b = self.h[1];
let mut c = self.h[2];
let mut d = self.h[3];
let mut e = self.h[4];
let mut f = self.h[5];
let mut g = self.h[6];
let mut hh = self.h[7];
for j in 0..80 {
let t1 = hh
.wrapping_add(Self::sig1(e))
.wrapping_add(Self::ch(e, f, g))
.wrapping_add(HASH384_K[j])
.wrapping_add(self.w[j]);
let t2 = Self::sig0(a).wrapping_add(Self::maj(a, b, c));
hh = g;
g = f;
f = e;
e = d.wrapping_add(t1);
d = c;
c = b;
b = a;
a = t1.wrapping_add(t2);
}
self.h[0] = self.h[0].wrapping_add(a);
self.h[1] = self.h[1].wrapping_add(b);
self.h[2] = self.h[2].wrapping_add(c);
self.h[3] = self.h[3].wrapping_add(d);
self.h[4] = self.h[4].wrapping_add(e);
self.h[5] = self.h[5].wrapping_add(f);
self.h[6] = self.h[6].wrapping_add(g);
self.h[7] = self.h[7].wrapping_add(hh);
}
pub fn init(&mut self) {
for i in 0..64 {
self.w[i] = 0
}
self.length[0] = 0;
self.length[1] = 0;
self.h[0] = HASH384_H0;
self.h[1] = HASH384_H1;
self.h[2] = HASH384_H2;
self.h[3] = HASH384_H3;
self.h[4] = HASH384_H4;
self.h[5] = HASH384_H5;
self.h[6] = HASH384_H6;
self.h[7] = HASH384_H7;
}
pub fn new() -> Self {
let mut nh = Self {
length: [0; 2],
h: [0; 8],
w: [0; 80],
};
nh.init();
return nh;
}
pub fn process(&mut self, byt: u8) {
let cnt = ((self.length[0] / 64) % 16) as usize;
self.w[cnt] <<= 8;
self.w[cnt] |= (byt & 0xFF) as u64;
self.length[0] += 8;
if self.length[0] == 0 {
self.length[1] += 1;
self.length[0] = 0
}
if (self.length[0] % 1024) == 0 {
self.transform()
}
}
pub fn process_array(&mut self, b: &[u8]) {
for i in 0..b.len() {
self.process(b[i])
}
}
pub fn process_num(&mut self, n: i32) {
self.process(((n >> 24) & 0xff) as u8);
self.process(((n >> 16) & 0xff) as u8);
self.process(((n >> 8) & 0xff) as u8);
self.process((n & 0xff) as u8);
}
pub fn hash(&mut self) -> [u8; HASH_BYTES] {
let mut digest: [u8; 48] = [0; HASH_BYTES];
let len0 = self.length[0];
let len1 = self.length[1];
self.process(0x80);
while (self.length[0] % 1024) != 896 {
self.process(0)
}
self.w[14] = len1;
self.w[15] = len0;
self.transform();
for i in 0..HASH_BYTES {
digest[i] = ((self.h[i / 8] >> (8 * (7 - i % 8))) & 0xff) as u8;
}
self.init();
return digest;
}
pub fn hmac(key: &[u8], text: &[u8]) -> [u8; HASH_BYTES] {
let mut k = key.to_vec();
if k.len() > BLOCK_SIZE {
let mut hash384 = Self::new();
hash384.init();
hash384.process_array(&k);
k = hash384.hash().to_vec();
}
let mut inner = vec![IPAD_BYTE; BLOCK_SIZE];
let mut outer = vec![OPAD_BYTE; BLOCK_SIZE];
for (i, byte) in k.iter().enumerate() {
inner[i] = inner[i] ^ byte;
outer[i] = outer[i] ^ byte;
}
inner.extend_from_slice(text);
let mut hash384 = Self::new();
hash384.init();
hash384.process_array(&inner);
let inner = hash384.hash();
outer.extend_from_slice(&inner);
let mut hash384 = Self::new();
hash384.init();
hash384.process_array(&outer);
hash384.hash()
}
pub fn hkdf_extract(salt: &[u8], ikm: &[u8]) -> [u8; HASH_BYTES] {
Self::hmac(salt, ikm)
}
pub fn hkdf_extend(prk: &[u8], info: &[u8], l: u8) -> Vec<u8> {
let mut n = l / (HASH_BYTES as u8);
if n * (HASH_BYTES as u8) < l {
n += 1;
}
let mut okm: Vec<u8> = vec![];
let mut previous = vec![]; for i in 0..n as usize {
let mut text: Vec<u8> = previous;
text.extend_from_slice(info);
text.push((i + 1) as u8); previous = Self::hmac(prk, &text).to_vec();
okm.extend_from_slice(&previous);
}
okm.resize(l as usize, 0);
okm
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_hash384_simple() {
let text = [0x01];
let mut hash384 = HASH384::new();
hash384.init();
hash384.process_array(&text);
let output = hash384.hash().to_vec();
let expected =
hex::decode("8d2ce87d86f55fcfab770a047b090da23270fa206832dfea7e0c946fff451f819add242374be551b0d6318ed6c7d41d8")
.unwrap();
assert_eq!(expected, output);
}
#[test]
fn test_hash384_empty() {
let text = [];
let mut hash384 = HASH384::new();
hash384.init();
hash384.process_array(&text);
let output = hash384.hash().to_vec();
let expected =
hex::decode("38b060a751ac96384cd9327eb1b1e36a21fdb71114be07434c0cc7bf63f6e1da274edebfe76f65fbd51ad2f14898b95b")
.unwrap();
assert_eq!(expected, output);
}
#[test]
fn test_hash384_long() {
let text = hex::decode("cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e01").unwrap();
let mut hash384 = HASH384::new();
hash384.init();
hash384.process_array(&text);
let output = hash384.hash().to_vec();
let expected =
hex::decode("1793c4989b4e68154c7159bee9756e5b72dbc0bd57c7583bb09c9a1c111f46fcaf8ef9faf1715e1eff36526c6c15a1f1")
.unwrap();
assert_eq!(expected, output);
}
#[test]
fn test_hmac_simple() {
let text = [0x01];
let key = [0x01];
let expected =
hex::decode("52650d924c6c3ed9f7b0fc64107e139d0d9254e8ecfb32e5780535897532ccee5272d61ec5d2abd19fa60e9f69f8711d")
.unwrap();
let output = HASH384::hmac(&key, &text).to_vec();
assert_eq!(expected, output);
}
#[test]
fn test_hmac_empty() {
let text = [];
let key = [];
let expected =
hex::decode("6c1f2ee938fad2e24bd91298474382ca218c75db3d83e114b3d4367776d14d3551289e75e8209cd4b792302840234adc")
.unwrap();
let output = HASH384::hmac(&key, &text).to_vec();
assert_eq!(expected, output);
}
#[test]
fn test_hmac_long() {
let text = hex::decode("cf83e1357eefb8bdf1542850d66d8007d620e4050b5715dc83f4a921d36ce9ce47d0d13c5d85f2b0ff8318d2877eec2f63b931bd47417a81a538327af927da3e01").unwrap();
let key = [0x01];
let expected =
hex::decode("dee07cba20bcf23f3913c6a885ac08b90702e2c5765f64040b336375c5ad35cce89e9c9f62983be516447e35e65de70c")
.unwrap();
let output = HASH384::hmac(&key, &text).to_vec();
assert_eq!(expected, output);
}
}