solana_accounts_db/
bucket_map_holder.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
use {
    crate::{
        accounts_index::{AccountsIndexConfig, DiskIndexValue, IndexLimitMb, IndexValue},
        bucket_map_holder_stats::BucketMapHolderStats,
        in_mem_accounts_index::{InMemAccountsIndex, StartupStats},
        waitable_condvar::WaitableCondvar,
    },
    solana_bucket_map::bucket_map::{BucketMap, BucketMapConfig},
    solana_measure::measure::Measure,
    solana_sdk::{
        clock::{Slot, DEFAULT_MS_PER_SLOT},
        timing::AtomicInterval,
    },
    std::{
        fmt::Debug,
        marker::PhantomData,
        sync::{
            atomic::{AtomicBool, AtomicU8, AtomicUsize, Ordering},
            Arc,
        },
        time::Duration,
    },
};
pub type Age = u8;
pub type AtomicAge = AtomicU8;
const _: () = assert!(std::mem::size_of::<Age>() == std::mem::size_of::<AtomicAge>());

const AGE_MS: u64 = DEFAULT_MS_PER_SLOT; // match one age per slot time

// 10 GB limit for in-mem idx. In practice, we don't get this high. This tunes how aggressively to save items we expect to use soon.
pub const DEFAULT_DISK_INDEX: Option<usize> = Some(10_000);

pub struct BucketMapHolder<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> {
    pub disk: Option<BucketMap<(Slot, U)>>,

    pub count_buckets_flushed: AtomicUsize,

    /// These three ages are individual atomics because their values are read many times from code during runtime.
    /// Instead of accessing the single age and doing math each time, each value is incremented each time the age occurs, which is ~400ms.
    /// Callers can ask for the precomputed value they already want.
    /// rolling 'current' age
    pub age: AtomicAge,
    /// rolling age that is 'ages_to_stay_in_cache' + 'age'
    pub future_age_to_flush: AtomicAge,
    /// rolling age that is effectively 'age' - 1
    /// these items are expected to be flushed from the accounts write cache or otherwise modified before this age occurs
    pub future_age_to_flush_cached: AtomicAge,

    pub stats: BucketMapHolderStats,

    age_timer: AtomicInterval,

    // used by bg processing to know when any bucket has become dirty
    pub wait_dirty_or_aged: Arc<WaitableCondvar>,
    next_bucket_to_flush: AtomicUsize,
    bins: usize,

    pub threads: usize,

    // how much mb are we allowed to keep in the in-mem index?
    // Rest goes to disk.
    pub mem_budget_mb: Option<usize>,

    /// how many ages should elapse from the last time an item is used where the item will remain in the cache
    pub ages_to_stay_in_cache: Age,

    /// startup is a special time for flush to focus on moving everything to disk as fast and efficiently as possible
    /// with less thread count limitations. LRU and access patterns are not important. Freeing memory
    /// and writing to disk in parallel are.
    /// Note startup is an optimization and is not required for correctness.
    startup: AtomicBool,
    _phantom: PhantomData<T>,

    pub(crate) startup_stats: Arc<StartupStats>,
}

impl<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> Debug for BucketMapHolder<T, U> {
    fn fmt(&self, _f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        Ok(())
    }
}

#[allow(clippy::mutex_atomic)]
impl<T: IndexValue, U: DiskIndexValue + From<T> + Into<T>> BucketMapHolder<T, U> {
    /// is the accounts index using disk as a backing store
    pub fn is_disk_index_enabled(&self) -> bool {
        self.disk.is_some()
    }

    pub fn increment_age(&self) {
        // since we are about to change age, there are now 0 buckets that have been flushed at this age
        // this should happen before the age.fetch_add
        // Otherwise, as soon as we increment the age, a thread could race us and flush before we swap this out since it detects the age has moved forward and a bucket will be eligible for flushing.
        let previous = self.count_buckets_flushed.swap(0, Ordering::AcqRel);
        // fetch_add is defined to wrap.
        // That's what we want. 0..255, then back to 0.
        self.age.fetch_add(1, Ordering::Release);
        self.future_age_to_flush.fetch_add(1, Ordering::Release);
        self.future_age_to_flush_cached
            .fetch_add(1, Ordering::Release);
        assert!(
            previous >= self.bins,
            "previous: {}, bins: {}",
            previous,
            self.bins
        ); // we should not have increased age before previous age was fully flushed
        self.wait_dirty_or_aged.notify_all(); // notify all because we can age scan in parallel
    }

    pub fn future_age_to_flush(&self, is_cached: bool) -> Age {
        if is_cached {
            &self.future_age_to_flush_cached
        } else {
            &self.future_age_to_flush
        }
        .load(Ordering::Acquire)
    }

    fn has_age_interval_elapsed(&self) -> bool {
        // note that when this returns true, state of age_timer is modified
        self.age_timer.should_update(self.age_interval_ms())
    }

    /// used by bg processes to determine # active threads and how aggressively to flush
    pub fn get_startup(&self) -> bool {
        self.startup.load(Ordering::Relaxed)
    }

    /// startup=true causes:
    ///      in mem to act in a way that flushes to disk asap
    /// startup=false is 'normal' operation
    pub fn set_startup(&self, value: bool) {
        if !value {
            self.wait_for_idle();
        }
        self.startup.store(value, Ordering::Relaxed)
    }

    /// return when the bg threads have reached an 'idle' state
    pub fn wait_for_idle(&self) {
        assert!(self.get_startup());
        if self.disk.is_none() {
            return;
        }

        // when age has incremented twice, we know that we have made it through scanning all bins since we started waiting,
        //  so we are then 'idle'
        let end_age = self.current_age().wrapping_add(2);
        loop {
            self.wait_dirty_or_aged
                .wait_timeout(Duration::from_millis(self.age_interval_ms()));
            if end_age == self.current_age() {
                break;
            }
        }
    }

    pub fn current_age(&self) -> Age {
        self.age.load(Ordering::Acquire)
    }

    pub fn bucket_flushed_at_current_age(&self, can_advance_age: bool) {
        let count_buckets_flushed = 1 + self.count_buckets_flushed.fetch_add(1, Ordering::AcqRel);
        if can_advance_age {
            self.maybe_advance_age_internal(
                self.all_buckets_flushed_at_current_age_internal(count_buckets_flushed),
            );
        }
    }

    /// have all buckets been flushed at the current age?
    pub fn all_buckets_flushed_at_current_age(&self) -> bool {
        self.all_buckets_flushed_at_current_age_internal(self.count_buckets_flushed())
    }

    /// have all buckets been flushed at the current age?
    fn all_buckets_flushed_at_current_age_internal(&self, count_buckets_flushed: usize) -> bool {
        count_buckets_flushed >= self.bins
    }

    pub fn count_buckets_flushed(&self) -> usize {
        self.count_buckets_flushed.load(Ordering::Acquire)
    }

    /// if all buckets are flushed at the current age and time has elapsed, then advance age
    pub fn maybe_advance_age(&self) -> bool {
        self.maybe_advance_age_internal(self.all_buckets_flushed_at_current_age())
    }

    /// if all buckets are flushed at the current age and time has elapsed, then advance age
    fn maybe_advance_age_internal(&self, all_buckets_flushed_at_current_age: bool) -> bool {
        // call has_age_interval_elapsed last since calling it modifies state on success
        if all_buckets_flushed_at_current_age && self.has_age_interval_elapsed() {
            self.increment_age();
            true
        } else {
            false
        }
    }

    pub fn new(bins: usize, config: &Option<AccountsIndexConfig>, threads: usize) -> Self {
        const DEFAULT_AGE_TO_STAY_IN_CACHE: Age = 5;
        let ages_to_stay_in_cache = config
            .as_ref()
            .and_then(|config| config.ages_to_stay_in_cache)
            .unwrap_or(DEFAULT_AGE_TO_STAY_IN_CACHE);

        let mut bucket_config = BucketMapConfig::new(bins);
        bucket_config.drives = config.as_ref().and_then(|config| {
            bucket_config.restart_config_file = config.drives.as_ref().and_then(|drives| {
                drives
                    .first()
                    .map(|drive| drive.join("accounts_index_restart"))
            });
            config.drives.clone()
        });

        let mem_budget_mb = match config
            .as_ref()
            .map(|config| &config.index_limit_mb)
            .unwrap_or(&IndexLimitMb::Unspecified)
        {
            // creator said to use disk idx with a specific limit
            IndexLimitMb::Limit(mb) => Some(*mb),
            // creator said InMemOnly, so no disk index
            IndexLimitMb::InMemOnly => None,
            // whatever started us didn't specify whether to use the acct idx
            IndexLimitMb::Unspecified => {
                // check env var if we were not started from a validator
                let mut use_default = true;
                if !config
                    .as_ref()
                    .map(|config| config.started_from_validator)
                    .unwrap_or_default()
                {
                    if let Ok(_limit) = std::env::var("SOLANA_TEST_ACCOUNTS_INDEX_MEMORY_LIMIT_MB")
                    {
                        // Note this env var means the opposite of the default. The default now is disk index is on.
                        // So, if this env var is set, DO NOT allocate with disk buckets if mem budget was not set, we were NOT started from validator, and env var was set
                        // we do not want the env var to have an effect when running the validator (only tests, benches, etc.)
                        use_default = false;
                    }
                }
                if use_default {
                    // if validator does not specify disk index limit or specify in mem only, then this is the default
                    DEFAULT_DISK_INDEX
                } else {
                    None
                }
            }
        };

        // only allocate if mem_budget_mb is Some
        let disk = mem_budget_mb.map(|_| BucketMap::new(bucket_config));
        Self {
            disk,
            ages_to_stay_in_cache,
            count_buckets_flushed: AtomicUsize::default(),
            // age = 0
            age: AtomicAge::default(),
            // future age = age (=0) + ages_to_stay_in_cache
            future_age_to_flush: AtomicAge::new(ages_to_stay_in_cache),
            // effectively age (0) - 1. So, the oldest possible age from 'now'
            future_age_to_flush_cached: AtomicAge::new(Age::MAX),
            stats: BucketMapHolderStats::new(bins),
            wait_dirty_or_aged: Arc::default(),
            next_bucket_to_flush: AtomicUsize::new(0),
            age_timer: AtomicInterval::default(),
            bins,
            startup: AtomicBool::default(),
            mem_budget_mb,
            threads,
            _phantom: PhantomData,
            startup_stats: Arc::default(),
        }
    }

    // get the next bucket to flush, with the idea that the previous bucket
    // is perhaps being flushed by another thread already.
    pub fn next_bucket_to_flush(&self) -> usize {
        self.next_bucket_to_flush
            .fetch_update(Ordering::AcqRel, Ordering::Acquire, |bucket| {
                Some((bucket + 1) % self.bins)
            })
            .unwrap()
    }

    /// prepare for this to be dynamic if necessary
    /// For example, maybe startup has a shorter age interval.
    fn age_interval_ms(&self) -> u64 {
        AGE_MS
    }

    /// return an amount of ms to sleep
    fn throttling_wait_ms_internal(
        &self,
        interval_ms: u64,
        elapsed_ms: u64,
        bins_flushed: u64,
    ) -> Option<u64> {
        let target_percent = 90; // aim to finish in 90% of the allocated time
        let remaining_ms = (interval_ms * target_percent / 100).saturating_sub(elapsed_ms);
        let remaining_bins = (self.bins as u64).saturating_sub(bins_flushed);
        if remaining_bins == 0 || remaining_ms == 0 || elapsed_ms == 0 || bins_flushed == 0 {
            // any of these conditions result in 'do not wait due to progress'
            return None;
        }
        let ms_per_s = 1_000;
        let rate_bins_per_s = bins_flushed * ms_per_s / elapsed_ms;
        let expected_bins_processed_in_remaining_time = rate_bins_per_s * remaining_ms / ms_per_s;
        if expected_bins_processed_in_remaining_time > remaining_bins {
            // wait because we predict will finish prior to target
            Some(1)
        } else {
            // do not wait because we predict will finish after target
            None
        }
    }

    /// Check progress this age.
    /// Return ms to wait to get closer to the wait target and spread out work over the entire age interval.
    /// Goal is to avoid cpu spikes at beginning of age interval.
    fn throttling_wait_ms(&self) -> Option<u64> {
        let interval_ms = self.age_interval_ms();
        let elapsed_ms = self.age_timer.elapsed_ms();
        let bins_flushed = self.count_buckets_flushed() as u64;
        self.throttling_wait_ms_internal(interval_ms, elapsed_ms, bins_flushed)
    }

    /// true if this thread can sleep
    fn should_thread_sleep(&self) -> bool {
        let bins_flushed = self.count_buckets_flushed();
        if bins_flushed >= self.bins {
            // all bins flushed, so this thread can sleep
            true
        } else {
            // at least 1 thread running for each bin that still needs to be flushed, so this thread can sleep
            let active = self.stats.active_threads.load(Ordering::Relaxed);
            bins_flushed.saturating_add(active as usize) >= self.bins
        }
    }

    // intended to execute in a bg thread
    pub fn background(
        &self,
        exit: Vec<Arc<AtomicBool>>,
        in_mem: Vec<Arc<InMemAccountsIndex<T, U>>>,
        can_advance_age: bool,
    ) {
        let bins = in_mem.len();
        let flush = self.disk.is_some();
        let mut throttling_wait_ms = None;
        loop {
            if !flush {
                self.wait_dirty_or_aged.wait_timeout(Duration::from_millis(
                    self.stats.remaining_until_next_interval(),
                ));
            } else if self.should_thread_sleep() || throttling_wait_ms.is_some() {
                let mut wait = std::cmp::min(
                    self.age_timer
                        .remaining_until_next_interval(self.age_interval_ms()),
                    self.stats.remaining_until_next_interval(),
                );
                if !can_advance_age {
                    // if this thread cannot advance age, then make sure we don't sleep 0
                    wait = wait.max(1);
                }
                if let Some(throttling_wait_ms) = throttling_wait_ms {
                    self.stats
                        .bg_throttling_wait_us
                        .fetch_add(throttling_wait_ms * 1000, Ordering::Relaxed);
                    wait = std::cmp::min(throttling_wait_ms, wait);
                }

                let mut m = Measure::start("wait");
                self.wait_dirty_or_aged
                    .wait_timeout(Duration::from_millis(wait));
                m.stop();
                self.stats
                    .bg_waiting_us
                    .fetch_add(m.as_us(), Ordering::Relaxed);
                // likely some time has elapsed. May have been waiting for age time interval to elapse.
                if can_advance_age {
                    self.maybe_advance_age();
                }
            }
            throttling_wait_ms = None;

            if exit.iter().any(|exit| exit.load(Ordering::Relaxed)) {
                break;
            }

            self.stats.active_threads.fetch_add(1, Ordering::Relaxed);
            for _ in 0..bins {
                if flush {
                    let index = self.next_bucket_to_flush();
                    in_mem[index].flush(can_advance_age);
                }
                self.stats.report_stats(self);
                if self.all_buckets_flushed_at_current_age() {
                    break;
                }
                throttling_wait_ms = self.throttling_wait_ms();
                if throttling_wait_ms.is_some() {
                    break;
                }
            }
            self.stats.active_threads.fetch_sub(1, Ordering::Relaxed);
        }
    }
}

#[cfg(test)]
pub mod tests {
    use {super::*, rayon::prelude::*, std::time::Instant};

    #[test]
    fn test_next_bucket_to_flush() {
        solana_logger::setup();
        let bins = 4;
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(AccountsIndexConfig::default()), 1);
        let visited = (0..bins)
            .map(|_| AtomicUsize::default())
            .collect::<Vec<_>>();
        let iterations = bins * 30;
        let threads = bins * 4;
        let expected = threads * iterations / bins;

        (0..threads).into_par_iter().for_each(|_| {
            (0..iterations).for_each(|_| {
                let bin = test.next_bucket_to_flush();
                visited[bin].fetch_add(1, Ordering::Relaxed);
            });
        });
        visited.iter().enumerate().for_each(|(bin, visited)| {
            assert_eq!(visited.load(Ordering::Relaxed), expected, "bin: {bin}")
        });
    }

    #[test]
    fn test_ages() {
        solana_logger::setup();
        let bins = 4;
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(AccountsIndexConfig::default()), 1);
        assert_eq!(0, test.current_age());
        assert_eq!(test.ages_to_stay_in_cache, test.future_age_to_flush(false));
        assert_eq!(Age::MAX, test.future_age_to_flush(true));
        (0..bins).for_each(|_| {
            test.bucket_flushed_at_current_age(false);
        });
        test.increment_age();
        assert_eq!(1, test.current_age());
        assert_eq!(
            test.ages_to_stay_in_cache + 1,
            test.future_age_to_flush(false)
        );
        assert_eq!(0, test.future_age_to_flush(true));
    }

    #[test]
    fn test_age_increment() {
        solana_logger::setup();
        let bins = 4;
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(AccountsIndexConfig::default()), 1);
        for age in 0..513 {
            assert_eq!(test.current_age(), (age % 256) as Age);

            // inc all
            for _ in 0..bins {
                assert!(!test.all_buckets_flushed_at_current_age());
                // cannot call this because based on timing, it may fire: test.bucket_flushed_at_current_age();
            }

            // this would normally happen once time went off and all buckets had been flushed at the previous age
            test.count_buckets_flushed
                .fetch_add(bins, Ordering::Release);
            test.increment_age();
        }
    }

    #[test]
    fn test_throttle() {
        solana_logger::setup();
        let bins = 128;
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(AccountsIndexConfig::default()), 1);
        let bins = test.bins as u64;
        let interval_ms = test.age_interval_ms();
        // 90% of time elapsed, all but 1 bins flushed, should not wait since we'll end up right on time
        let elapsed_ms = interval_ms * 89 / 100;
        let bins_flushed = bins - 1;
        let result = test.throttling_wait_ms_internal(interval_ms, elapsed_ms, bins_flushed);
        assert_eq!(result, None);
        // 10% of time, all bins but 1, should wait
        let elapsed_ms = interval_ms / 10;
        let bins_flushed = bins - 1;
        let result = test.throttling_wait_ms_internal(interval_ms, elapsed_ms, bins_flushed);
        assert_eq!(result, Some(1));
        // 5% of time, 8% of bins, should wait. target is 90%. These #s roughly work
        let elapsed_ms = interval_ms * 5 / 100;
        let bins_flushed = bins * 8 / 100;
        let result = test.throttling_wait_ms_internal(interval_ms, elapsed_ms, bins_flushed);
        assert_eq!(result, Some(1));
        // 11% of time, 12% of bins, should NOT wait. target is 90%. These #s roughly work
        let elapsed_ms = interval_ms * 11 / 100;
        let bins_flushed = bins * 12 / 100;
        let result = test.throttling_wait_ms_internal(interval_ms, elapsed_ms, bins_flushed);
        assert_eq!(result, None);
    }

    #[test]
    fn test_disk_index_enabled() {
        let bins = 1;
        let config = AccountsIndexConfig {
            index_limit_mb: IndexLimitMb::Limit(0),
            ..AccountsIndexConfig::default()
        };
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(config), 1);
        assert!(test.is_disk_index_enabled());
    }

    #[test]
    fn test_age_time() {
        solana_logger::setup();
        let bins = 1;
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(AccountsIndexConfig::default()), 1);
        let threads = 2;
        let time = AGE_MS * 8 / 3;
        let expected = (time / AGE_MS) as Age;
        let now = Instant::now();
        test.bucket_flushed_at_current_age(true); // done with age 0
        (0..threads).into_par_iter().for_each(|_| {
            // This test used to be more strict with time, but in a parallel, multi test environment,
            // sometimes threads starve and this test intermittently fails. So, give it more time than it should require.
            // This may be aggrevated by the strategy of only allowing thread 0 to advance the age.
            while now.elapsed().as_millis() < (time as u128) * 100 {
                if test.maybe_advance_age() {
                    test.bucket_flushed_at_current_age(true);
                }

                if test.current_age() >= expected {
                    break;
                }
            }
        });
        assert!(
            test.current_age() >= expected,
            "{}, {}",
            test.current_age(),
            expected
        );
    }

    #[test]
    fn test_age_broad() {
        solana_logger::setup();
        let bins = 4;
        let test = BucketMapHolder::<u64, u64>::new(bins, &Some(AccountsIndexConfig::default()), 1);
        assert_eq!(test.current_age(), 0);
        for _ in 0..bins {
            assert!(!test.all_buckets_flushed_at_current_age());
            test.bucket_flushed_at_current_age(true);
        }
        std::thread::sleep(std::time::Duration::from_millis(AGE_MS * 2));
        test.maybe_advance_age();
        assert_eq!(test.current_age(), 1);
        assert!(!test.all_buckets_flushed_at_current_age());
    }
}