solana_accounts_db/tiered_storage/byte_block.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
//! The utility structs and functions for writing byte blocks for the
//! accounts db tiered storage.
use {
crate::tiered_storage::{footer::AccountBlockFormat, meta::AccountMetaOptionalFields},
std::{
io::{Cursor, Read, Result as IoResult, Write},
mem,
},
};
/// The encoder for the byte-block.
#[derive(Debug)]
pub enum ByteBlockEncoder {
Raw(Cursor<Vec<u8>>),
Lz4(lz4::Encoder<Vec<u8>>),
}
/// The byte block writer.
///
/// All writes (`write_type` and `write`) will be buffered in the internal
/// buffer of the ByteBlockWriter using the specified encoding.
///
/// To finalize all the writes, invoke `finish` to obtain the encoded byte
/// block.
#[derive(Debug)]
pub struct ByteBlockWriter {
/// the encoder for the byte-block
encoder: ByteBlockEncoder,
/// the length of the raw data
len: usize,
}
impl ByteBlockWriter {
/// Create a ByteBlockWriter from the specified AccountBlockFormat.
pub fn new(encoding: AccountBlockFormat) -> Self {
Self {
encoder: match encoding {
AccountBlockFormat::AlignedRaw => ByteBlockEncoder::Raw(Cursor::new(Vec::new())),
AccountBlockFormat::Lz4 => ByteBlockEncoder::Lz4(
lz4::EncoderBuilder::new()
.level(0)
.build(Vec::new())
.unwrap(),
),
},
len: 0,
}
}
/// Return the length of the raw data (i.e. after decoding).
pub fn raw_len(&self) -> usize {
self.len
}
/// Write plain ol' data to the internal buffer of the ByteBlockWriter instance
///
/// Prefer this over `write_type()`, as it prevents some undefined behavior.
pub fn write_pod<T: bytemuck::NoUninit>(&mut self, value: &T) -> IoResult<usize> {
// SAFETY: Since T is NoUninit, it does not contain any uninitialized bytes.
unsafe { self.write_type(value) }
}
/// Write the specified typed instance to the internal buffer of
/// the ByteBlockWriter instance.
///
/// Prefer `write_pod()` when possible, because `write_type()` may cause
/// undefined behavior if `value` contains uninitialized bytes.
///
/// # Safety
///
/// Caller must ensure casting T to bytes is safe.
/// Refer to the Safety sections in std::slice::from_raw_parts()
/// and bytemuck's Pod and NoUninit for more information.
pub unsafe fn write_type<T>(&mut self, value: &T) -> IoResult<usize> {
let size = mem::size_of::<T>();
let ptr = value as *const _ as *const u8;
// SAFETY: The caller ensures that `value` contains no uninitialized bytes,
// we ensure the size is safe by querying T directly,
// and Rust ensures all values are at least byte-aligned.
let slice = unsafe { std::slice::from_raw_parts(ptr, size) };
self.write(slice)?;
Ok(size)
}
/// Write all the Some fields of the specified AccountMetaOptionalFields.
///
/// Note that the existence of each optional field is stored separately in
/// AccountMetaFlags.
pub fn write_optional_fields(
&mut self,
opt_fields: &AccountMetaOptionalFields,
) -> IoResult<usize> {
let mut size = 0;
if let Some(rent_epoch) = opt_fields.rent_epoch {
size += self.write_pod(&rent_epoch)?;
}
if let Some(hash) = opt_fields.account_hash {
size += self.write_pod(&hash)?;
}
debug_assert_eq!(size, opt_fields.size());
Ok(size)
}
/// Write the specified typed bytes to the internal buffer of the
/// ByteBlockWriter instance.
pub fn write(&mut self, buf: &[u8]) -> IoResult<()> {
match &mut self.encoder {
ByteBlockEncoder::Raw(cursor) => cursor.write_all(buf)?,
ByteBlockEncoder::Lz4(lz4_encoder) => lz4_encoder.write_all(buf)?,
};
self.len += buf.len();
Ok(())
}
/// Flush the internal byte buffer that collects all the previous writes
/// into an encoded byte array.
pub fn finish(self) -> IoResult<Vec<u8>> {
match self.encoder {
ByteBlockEncoder::Raw(cursor) => Ok(cursor.into_inner()),
ByteBlockEncoder::Lz4(lz4_encoder) => {
let (compressed_block, result) = lz4_encoder.finish();
result?;
Ok(compressed_block)
}
}
}
}
/// The util struct for reading byte blocks.
pub struct ByteBlockReader;
/// Reads the raw part of the input byte_block, at the specified offset, as type T.
///
/// Returns None if `offset` + size_of::<T>() exceeds the size of the input byte_block.
///
/// Type T must be plain ol' data to ensure no undefined behavior.
pub fn read_pod<T: bytemuck::AnyBitPattern>(byte_block: &[u8], offset: usize) -> Option<&T> {
// SAFETY: Since T is AnyBitPattern, it is safe to cast bytes to T.
unsafe { read_type(byte_block, offset) }
}
/// Reads the raw part of the input byte_block at the specified offset
/// as type T.
///
/// If `offset` + size_of::<T>() exceeds the size of the input byte_block,
/// then None will be returned.
///
/// Prefer `read_pod()` when possible, because `read_type()` may cause
/// undefined behavior.
///
/// # Safety
///
/// Caller must ensure casting bytes to T is safe.
/// Refer to the Safety sections in std::slice::from_raw_parts()
/// and bytemuck's Pod and AnyBitPattern for more information.
pub unsafe fn read_type<T>(byte_block: &[u8], offset: usize) -> Option<&T> {
let (next, overflow) = offset.overflowing_add(std::mem::size_of::<T>());
if overflow || next > byte_block.len() {
return None;
}
let ptr = byte_block[offset..].as_ptr() as *const T;
debug_assert!(ptr as usize % std::mem::align_of::<T>() == 0);
// SAFETY: The caller ensures it is safe to cast bytes to T,
// we ensure the size is safe by querying T directly,
// and we just checked above to ensure the ptr is aligned for T.
Some(unsafe { &*ptr })
}
impl ByteBlockReader {
/// Decode the input byte array using the specified format.
///
/// Typically, the input byte array is the output of ByteBlockWriter::finish().
///
/// Note that calling this function with AccountBlockFormat::AlignedRaw encoding
/// will result in panic as the input is already decoded.
pub fn decode(encoding: AccountBlockFormat, input: &[u8]) -> IoResult<Vec<u8>> {
match encoding {
AccountBlockFormat::Lz4 => {
let mut decoder = lz4::Decoder::new(input).unwrap();
let mut output = vec![];
decoder.read_to_end(&mut output)?;
Ok(output)
}
AccountBlockFormat::AlignedRaw => panic!("the input buffer is already decoded"),
}
}
}
#[cfg(test)]
mod tests {
use {
super::*,
crate::accounts_hash::AccountHash,
solana_sdk::{hash::Hash, stake_history::Epoch},
};
fn read_type_unaligned<T>(buffer: &[u8], offset: usize) -> (T, usize) {
let size = std::mem::size_of::<T>();
let (next, overflow) = offset.overflowing_add(size);
assert!(!overflow && next <= buffer.len());
let data = &buffer[offset..next];
let ptr = data.as_ptr() as *const T;
(unsafe { std::ptr::read_unaligned(ptr) }, next)
}
fn write_single(format: AccountBlockFormat) {
let mut writer = ByteBlockWriter::new(format);
let value: u32 = 42;
writer.write_pod(&value).unwrap();
assert_eq!(writer.raw_len(), mem::size_of::<u32>());
let buffer = writer.finish().unwrap();
let decoded_buffer = if format == AccountBlockFormat::AlignedRaw {
buffer
} else {
ByteBlockReader::decode(format, &buffer).unwrap()
};
assert_eq!(decoded_buffer.len(), mem::size_of::<u32>());
let (value_from_buffer, next) = read_type_unaligned::<u32>(&decoded_buffer, 0);
assert_eq!(value, value_from_buffer);
if format != AccountBlockFormat::AlignedRaw {
assert_eq!(next, mem::size_of::<u32>());
}
}
#[test]
fn test_write_single_raw_format() {
write_single(AccountBlockFormat::AlignedRaw);
}
#[test]
fn test_write_single_encoded_format() {
write_single(AccountBlockFormat::Lz4);
}
#[derive(Debug, PartialEq)]
struct TestMetaStruct {
lamports: u64,
owner_index: u32,
data_len: usize,
}
fn write_multiple(format: AccountBlockFormat) {
let mut writer = ByteBlockWriter::new(format);
let test_metas: Vec<TestMetaStruct> = vec![
TestMetaStruct {
lamports: 10,
owner_index: 0,
data_len: 100,
},
TestMetaStruct {
lamports: 20,
owner_index: 1,
data_len: 200,
},
TestMetaStruct {
lamports: 30,
owner_index: 2,
data_len: 300,
},
];
let test_data1 = [11u8; 100];
let test_data2 = [22u8; 200];
let test_data3 = [33u8; 300];
// Write the above meta and data in an interleaving way.
unsafe {
writer.write_type(&test_metas[0]).unwrap();
writer.write_type(&test_data1).unwrap();
writer.write_type(&test_metas[1]).unwrap();
writer.write_type(&test_data2).unwrap();
writer.write_type(&test_metas[2]).unwrap();
writer.write_type(&test_data3).unwrap();
}
assert_eq!(
writer.raw_len(),
mem::size_of::<TestMetaStruct>() * 3
+ mem::size_of_val(&test_data1)
+ mem::size_of_val(&test_data2)
+ mem::size_of_val(&test_data3)
);
let buffer = writer.finish().unwrap();
let decoded_buffer = if format == AccountBlockFormat::AlignedRaw {
buffer
} else {
ByteBlockReader::decode(format, &buffer).unwrap()
};
assert_eq!(
decoded_buffer.len(),
mem::size_of::<TestMetaStruct>() * 3
+ mem::size_of_val(&test_data1)
+ mem::size_of_val(&test_data2)
+ mem::size_of_val(&test_data3)
);
// verify meta1 and its data
let (meta1_from_buffer, next1) = read_type_unaligned::<TestMetaStruct>(&decoded_buffer, 0);
assert_eq!(test_metas[0], meta1_from_buffer);
assert_eq!(
test_data1,
decoded_buffer[next1..][..meta1_from_buffer.data_len]
);
// verify meta2 and its data
let (meta2_from_buffer, next2) = read_type_unaligned::<TestMetaStruct>(
&decoded_buffer,
next1 + meta1_from_buffer.data_len,
);
assert_eq!(test_metas[1], meta2_from_buffer);
assert_eq!(
test_data2,
decoded_buffer[next2..][..meta2_from_buffer.data_len]
);
// verify meta3 and its data
let (meta3_from_buffer, next3) = read_type_unaligned::<TestMetaStruct>(
&decoded_buffer,
next2 + meta2_from_buffer.data_len,
);
assert_eq!(test_metas[2], meta3_from_buffer);
assert_eq!(
test_data3,
decoded_buffer[next3..][..meta3_from_buffer.data_len]
);
}
#[test]
fn test_write_multiple_raw_format() {
write_multiple(AccountBlockFormat::AlignedRaw);
}
#[test]
fn test_write_multiple_lz4_format() {
write_multiple(AccountBlockFormat::Lz4);
}
fn write_optional_fields(format: AccountBlockFormat) {
let mut test_epoch = 5432312;
let mut writer = ByteBlockWriter::new(format);
let mut opt_fields_vec = vec![];
let mut some_count = 0;
// prepare a vector of optional fields that contains all combinations
// of Some and None.
for rent_epoch in [None, Some(test_epoch)] {
for account_hash in [None, Some(AccountHash(Hash::new_unique()))] {
some_count += rent_epoch.iter().count() + account_hash.iter().count();
opt_fields_vec.push(AccountMetaOptionalFields {
rent_epoch,
account_hash,
});
}
test_epoch += 1;
}
// write all the combinations of the optional fields
let mut expected_size = 0;
for opt_fields in &opt_fields_vec {
writer.write_optional_fields(opt_fields).unwrap();
expected_size += opt_fields.size();
}
let buffer = writer.finish().unwrap();
let decoded_buffer = if format == AccountBlockFormat::AlignedRaw {
buffer
} else {
ByteBlockReader::decode(format, &buffer).unwrap()
};
// first, verify whether the size of the decoded data matches the
// expected size.
assert_eq!(decoded_buffer.len(), expected_size);
// verify the correctness of the written optional fields
let mut verified_count = 0;
let mut offset = 0;
for opt_fields in &opt_fields_vec {
if let Some(expected_rent_epoch) = opt_fields.rent_epoch {
let rent_epoch = read_pod::<Epoch>(&decoded_buffer, offset).unwrap();
assert_eq!(*rent_epoch, expected_rent_epoch);
verified_count += 1;
offset += std::mem::size_of::<Epoch>();
}
if let Some(expected_hash) = opt_fields.account_hash {
let hash = read_pod::<AccountHash>(&decoded_buffer, offset).unwrap();
assert_eq!(hash, &expected_hash);
verified_count += 1;
offset += std::mem::size_of::<AccountHash>();
}
}
// make sure the number of Some fields matches the number of fields we
// have verified.
assert_eq!(some_count, verified_count);
}
#[test]
fn test_write_optionl_fields_raw_format() {
write_optional_fields(AccountBlockFormat::AlignedRaw);
}
#[test]
fn test_write_optional_fields_lz4_format() {
write_optional_fields(AccountBlockFormat::Lz4);
}
}